Introduction. Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA periprosthetic distal femur fractures (PDFF). Method. Patients with PDFF (AO 33A-C[VB1, C1, D1], Su types 1-3) managed operatively with open reduction and internal fixation (ORIF) were retrospectively reviewed. Exclusion criteria were acute management with a distal femur replacement, less than 6 months of follow-up, and lack of injury or follow-up radiographs. The primary outcome measure was reoperation to achieve bony union. Comparisons were made between cases that did and did not require a reoperation to achieve union. Univariate analysis was used to identify factors to be analyzed in multivariate analysis to determine independent risk factors for the primary outcome. Result. A total of 77 patients met inclusion criteria. Union rate was 69/77 (89.6%). There were no differences between the groups for age, sex, BMI, comorbidities, Su classification, open
Abstract. Objectives. Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads. Methods. In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented anthropometric test device during experimental simulations of rugby collisions. Experimental kinematics and muscle excitations were prescribed to the model and impact forces applied to seven skull locations (three cranial and four lateral). To examine the effects of technique on intervertebral joint loads the model's neck angle was altered in steps of 5° about each rotational axis resulting in a total of 1,623 experimentally informed simulations of misdirected tackles. Results. Neck flexion angles and cranial impact locations had the largest effects on maximal compression, anterior shear and flexion moment loads. During posterior cranial impacts compression forces and flexion moments increased from 1500 to 3200 N and 30 to 60 Nm respectively between neck angles of 30° extension and 30° flexion. This was more evident at the C5-C6 and C6-C7 joints. Anterior shear loads remained stable throughout neck angle ranges however during anterior impacts they were directed posteriorly when the neck was flexed. Conclusions. The combination of estimated joint loads in the lower cervical spine support buckling as the primary
This study aims to investigate that a single dose of tranexamic acid (TXA) will reduce blood loss and transfusion rates in elderly patients, undergoing intertrochanteric (IT) or femoral neck fractures surgery. Consecutive elderly patients receiving hip fracture surgery for stable or unstable IT fracture, treated with short intramedullary nail (IMN) insertion as well as cemented hemiarthroplasty for acute femoral neck (subcapital) hip fracture, were screened for inclusion in this single-centre randomized trial. Patients were randomly allocated to a study group by sealed envelope. One TXA dose of 15 mg/kg i.v. diluted in 100 ml N/S or one placebo dose i.v. in 100 ml N/S were administered 5 mins before the skin cut. Haemoglobin (Hb) concentration was measured at admission time and prior to surgery. Post-operatively it was measured on a daily basis until day 4, giving a total of four Hb measurements (days 1 to 4). The transfusion trigger point was determined in accordance with the French guidelines for erythrocyte blood transfusion. The transfusion trigger was 10 g/dl for patients at risk, while in all other cases, it was 9 g/dl. Information regarding the transfusions number was assessed directly by the hospital blood bank database. Blood loss was calculated by the Hb dilution method. Nadler's formula was used to calculate patients' blood volume. For calculation of total blood loss (TBL) expressed to total Hb loss and total Volume loss, the number of transfusions (55 grams of Hb per transfusion), the Hb concentration on preoperatively (Hgbi) and the Hb concentration on the last measure (Hgbe) were used. (Hb balance method). The primary efficacy outcome was the number of transfusions of allogeneic RBC from surgery up to day 4. The secondary ones were the total blood loss from surgery to day 4 as it was calculated by Hb-balance method. After randomization, 35 patients with femoral neck fracture and 30 patients with IT fracture received TXA prior to surgery. Respectively, 30 patients with femoral neck fracture and 55 with IT fracture didn't receive TXA. The groups did not differ significantly in their basic demographics (age, gender, BMI,
Evidence that L5 transverse process fracture indicates pelvic instability is insufficient and controversial. Because of unstable pelvis fractures have high mortality rate, they require urgent treatment and good follow-up. The lumbar region is also affected by high-energy traumas in the pelvis region, which causes damage to the muscles and ligamentous structures that adhere to the lumbar transverse process. For this reason, L5 transverse process fracture is thought to be an indicator showing pelvic instability. However, our study shows that this is not like that. This study was carried out in order to investigate the effect of L5 transvers process fracture on pelvic instability and lack of sufficient data in the literature. Between 2017–2020, 86 Patient who were hospitalized and treated with a diagnosis of pelvic fracture were retrospectively studied in our clinic. Pelvic X-Ray and tomography was taken pre-op for all patient. Demographic features, pre-op and post-op hemoglobin counts, how many units of blood transfusion needed in total, fixation method, surgical intervention, presence of additional
Acute multiligament knee injuries (MLKI) are rare, high energy traumatic injuries associated with an increased risk of lower limb complications. The objectives of this study were to investigate the adequacy of clinical assessment for neurovascular status, compartment syndrome, and deep vein thrombosis in the emergency department (ED) following acute MLKI. The authors conducted a retrospective case note review of 19 patients with MLKI presenting at the ED of a Major Trauma Centre during a 7.5-year period between June 2009 and December 2016. MLKIs were diagnosed by MRI or examination under anaesthesia and confirmed intraoperatively. Arterial assessment consisted of documented capillary refill time, dorsalis pedis and posterior tibial pulse assessment (through palpation or Doppler ultrasound), and ankle-brachial pressure index (ABPI) calculation. Neural assessment was adequate if there was documented assessment of both sensory and motor function of the superficial peroneal, deep peroneal and tibial nerves individually. Data was collected for 19 patients (17 male, 2 female). The mean age was 34 (range: 14–61). The most common
Cervical spine fractures are frequent in impact sports, such as rugby union. The consequences of these fractures can be devastating as they can lead to paraplegia, tetraplegia and death. Many studies have been conducted to understand the
Summary. This study describes the use of a quasi-static, 6DOF knee loading simulator using cadaveric specimens. Muscle force profiles yield repeatable results. Intra-articular pressure and contact area are dependent on loading condition and ACL integrity. Introduction. Abnormal contact mechanics of the tibiofemoral joint is believed to influence the development and progression of joint derangements. As such, understanding the factors that regulate joint stability may provide insight into the underlying
Summary Statement. The mechanism of spinal cord injury varies across the human population and this may be important for the development of effective therapies. Therefore, detailed understanding of how variables such as impact velocity and depth affect cord tissue damage is important. Introduction. Studies have shown an independent effect of impact velocity and depth on injury severity, thereby suggesting importance of the interaction between the two for spinal cord injury. This work examines both the individual and interactive effects of impact velocity and impact depth on demyelination, tissue sparing, and behavioural outcomes in the rat cervical spinal cord. It also aims to understand the contribution of the energy applied during impact, not only the impact factors. Decoupling the effects of these two impact parameters will help to describe the
The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.