Current strategy for orthopedic tissue engineering mainly focusses on the regeneration of the damaged tissue using cell-seeded three-dimensional scaffolds. Biocompatible scaffolds with controllable degradation and suitable mechanical property are required to support new tissue in-growth and regeneration . [1]. Porous composite scaffolds made from organic and inorganic materials are highly preferred, which can mimic the natural bone in their composition as well can enhance tissue repair . [2]. Scaffolds with optimum mechanical strength in both dry and wet state are more suitable for in vivo orthopedic application. Biphasic calcium phosphate (BCP), a biocompatible ceramic and carboxymethyl cellulose (CMC), a semi-natural polymer are used in the study to prepare composite scaffolds. Citric acid is used as a crosslinking agent for the polymer to improve its stability . [3]. Stability, mechanical property in dry and wet conditions and cytocompatibility of the scaffolds were investigated. Cellulose-BCP (BC25) and crosslinked cellulose-BCP (BC25CA) scaffolds are fabricated by freeze-drying method. The stability of the scaffolds was assessed in phosphate buffered saline (PBS) and compressive modulus was measured in dry and wet condition. Cytocompatibility was assessed by culturing pre-osteoblast cells at a density of 2.5×10. 4. on crosslinked scaffold and cell proliferation was measured by performing MTT assay on day 4 and 7. Crosslinked scaffold was more stable than non-crosslinked scaffold in aqueous environment as the latter disintegrated within few hours in the solution. Non-crosslinked scaffold showed higher compressive modulus of 116.3±14.8 kPa in dry condition but is reduced to 1.2±0.7 kPa in hydrated state. Though the crosslinked scaffold shows low compressive modulus of 37.67±6.7 kPa in dry state, it exhibited appreciable compressive moduli of 17.15±1.3 kPa in hydrated state. Thus, the crosslinking of the scaffolds improved the stability as well as the mechanical strength in wet condition. Cytocompatibility was assessed by culturing pre-osteoblast cells and from the MTT assay, it is shown that the cells are proliferating on the crosslinked scaffolds with time which indicates that the scaffolds are non-toxic and cytocompatible. Stability and optimum mechanical property for scaffold in aqueous environment are highly crucial for in