Advertisement for orthosearch.org.uk
Results 1 - 20 of 45
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 24 - 24
1 Oct 2022
Tavana S Leong J Freedman B Newell N
Full Access

Background. In vivo evaluation of IVD strains is crucial to better understand normal and pathological IVD mechanics, and to evaluate the effectiveness of treatments. This study aimed to 1) develop a novel in vivo technique based on 3T MRI and digital volume correlation (DVC) to measure strains within IVDs and 2) to use this technique to resolve 3D strains within IVDs of healthy volunteers during extension. Methods. This study included 40 lumbar IVDs from eight healthy subjects. The optimal MR sequence to minimise DVC uncertainties was identified by scanning one subject with four different sequences: CISS, T1VIBE, T2SPACE, and T2TSE. To assess the repeatability of the strain measurements in spines with different anatomical and morphological variations four subjects were scanned with the optimal sequence, and uncertainties of the strain measurements were quantified. Additionally, to calculate 3D strains during extension, MRIs were acquired from six subjects in both the neutral position and after full extension. Results. Measurement errors were lowest when using the T2TSE sequence (precision=0.33 ± 0.10%, accuracy=0.48 ± 0.11%). The largest average maximum tensile and shear strains were seen at the L2-L3 level in all volunteers (7.2 ± 1.5% and 6.8 ± 1.1%, respectively), while the L5-S1 level experienced the lowest average tensile and shear strains (3.5 ± 1.0% and 3.9 ± 0.7%, respectively). Conclusion. The findings of this study establish clinical MRI-based DVC (MRI-DVC) as a new tool for in vivo strain measurement within human IVDs. MRI-DVC successfully provided internal strain distributions within IVDs and has great potential to be used for a wide range of clinical applications. Conflict of interest: No conflicts of interest. Source of funding: This work was supported by the EPSRC, New Investigator Award, EP/V029452/1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 31 - 31
7 Aug 2024
Williams J Meakin J Whitehead N Mills A Williams D Ward M Kelly E Shillabeer D Javadi A Holsgrove T Holt C
Full Access

Background. Our current research aims to develop technologies to predict spinal loads in vivo using a combination of imaging and modelling methods. To ensure the project's success and inform future applications of the technology, we sought to understand the opinions and perspectives of patients and the public. Methods. A 90-minute public and patient involvement event was developed in collaboration with Exeter Science Centre and held on World Spine Day 2023. The event involved a brief introduction to the project goals followed by an interactive questionnaire to gauge the participants’ background knowledge and interest. The participants then discussed five topics: communication, future directions of the research, concerns about the research protocol, concerns about data, and interest in the project team and research process. A final questionnaire was used to determine their thoughts about the event. Results. Twelve adults attended the event, many motivated by their experience or interest in back pain. A thematic analysis was used to review participant comments on the research project, identifying the need to relate the research to everyday life, present risks in various ways, and be transparent about funding and data sharing. In terms of future applications, participants felt the technology should be used to understand normal spine behaviour, prevent problems, and improve treatment. Participants agreed that they had got something positive out of engaging in the event. Conclusion. Engagement with public and patient stakeholders is an essential activity that can generate vital information to inform and add value to technology development projects. Conflicts of interest. No conflicts of interest. Sources of funding. EPSRC grants EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 2 - 2
1 Oct 2022
Cherif H Li L Snuggs J Sammon C Beckman L Haglund L Le Maitre C
Full Access

Background. We have previously reported an injectable hydrogel (NPgel), which could deliver patients own stem cells, via small bore needles, decreasing damage to the annulus fibrosus. NPgel drives differentiation to NP cells and can inhibit the degenerate niche. However, clinical success of NPgel is dependent on the capacity to inject NPgel into naturally degenerate human discs, restore mechanical function to the IVD, prevent extrusion during loading and induce regeneration. This study assessed injectability of NPgel into human IVD, influence on mechanical properties, regeneration ability in an ex vivo culture system and retention under failure testing. Methodology. Cadaveric human discs were used to calculate disc height and to determine Youngs Modulus during simulated walking pre and post injection of NPgel, extrusion testing performed. Whole human IVDs were injected with NPgel +/− human BMPCs and maintained in culture under physiological loading regime for 4 weeks. Pre and post culture MRI imaging and in line biomechanical characteristics determined. Histology and immunochemistry performed for anabolic and catabolic factors. Results. NPgel injection significantly increased disc height and Youngs modulus with no extrusion observed during failure testing. T1ρ intensity was increased during culture in those injected with NPgel +/− cells compared to non-injected discs, and biomechanical restoration. Histological analysis has demonstrated excellent tissue attachment to the injected gel, and cellular migration into acellular gel systems. With increased matrix production and decreased catabolic factor expression. Conclusion. These results provide essential proof of concept data supporting the use of NPgel as an injectable therapy for disc regeneration. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by MRC and Versus Arthritis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2018
Thorpe A Freeman C Farthing P Callaghan J Hatton P Brook I Sammon C Le Maitre C
Full Access

Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. Conclusion. This novel hydrogel is biocompatible, facilitates migration of cells, promotes increased bone formation and integrates with surrounding bone. This system could be injected to fill spaces within and surrounding spinal cages to aid in cage fixation and spinal fusion without the need for harvesting of bone autografts, thus reducing operative risk and surgical cost. Conflicts of Interest: None. Source of Funding: BMRC, MERI Sheffield Hallam University


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 11 - 11
1 Feb 2016
Breen A Dupac M Osborne N
Full Access

Background and Purpose:. The inability of intervertebral joints to resist perturbation due to laxity is traditionally measured in cadaveric specimens as their neutral zones (NZ). However in patients, quantitative fluoroscopic (QF) examinations substitute the Initial Attainment Rate for this. If these two measures correspond sufficiently, a clinical method for measuring segmental instability is possible. This study explored this by determining the criterion validity of the Initial Attainment Rate against the Dynamic NZ in an unloaded multilevel porcine spine. Methods and Results:. A 5-segment porcine spine was prepared and mounted on a motorised horizontal motion platform fitted with a digital force gage. Left and right bending moments were calculated about each intervertebral joint for 10 repeated side bends using an inverse dynamics method. The Dynamic NZs and Initial Attainment Rates in the first 10° of platform motion at each level were correlated. The Initial Attainment Rates were comparable to those found in vivo in healthy controls. Substantial and highly significant levels of correlation between these and Dynamic NZs were found for left (rho= 0.75, p=0.0002) and combined left-right bending (rho=0.72, p=0.0001) and moderate for right bending alone (rho=0.55, p=0.0012). Conclusion:. This study found good correlation between the Initial Attainment Rate and the Dynamic NZ indicating the feasibility of assessing intervertebral laxity using QF in clinical studies. Confirmatory studies with multiple specimens adding sagittal and axial plane rotations are needed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 8 - 8
1 Sep 2019
Breen A Hemming R Mellor F Breen A
Full Access

Background

Dynamic measurement of continuous intervertebral motion in low back pain (LBP) research in-vivo is developing. Lumbar motion parameters with the features of biomarkers are emerging and show promise for advancing understanding of personalised biometrics of LBP. However, measurement of changes over time inevitably involve error, due to subjects' natural variation and/or variation in the measurement process. Thus, intra-subject repeatability of parameters to measure changes over time should be established.

Methods

Seven lumbar spine motion parameters, measured using quantitative fluoroscopy (QF), were assessed for intra-subject repeatability: Intervertebral range-of-motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation and flexion disc height. Intra-subject reliability (ICC) and minimal detectable change (MDC95) of baseline and 6-week follow-up measurements were obtained for 109 healthy volunteers (54 coronal and 55 sagittal).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 16 - 16
1 Feb 2014
Juroskova V Fulford J Barker AR Meakin JR
Full Access

Purpose of the study

To assess the ability of magnetic resonance spectroscopy (MRS) to detect changes in spinal muscle metabolism after a 4-week exercise intervention.

Background

Spinal muscle atrophy is associated with back pain and exercise interventions have been shown to reduce pain and improve function. It is not always clear, however, whether improvements are due to enhanced muscle performance or occur for other reasons (e.g. psychological, neurological). MRS can be used to measure muscle metabolism and could therefore be useful for assessing the mechanisms by which exercise improves function in back pain patients.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 35 - 35
1 Jun 2012
Noordeen H Elsebaie H Akbarnia B
Full Access

Introduction

Surgical correction of spinal deformities is a challenge; segmental instrumentation controlling almost every level is the most recent approach. Correction of the deformity only through apical manipulation has many potential advantages, including little tissue disruption, less invasive intervention, preservation of spinal mobility, and vertebral growth. However, quantification of the amount of force needed to pull on the apex and its effect on translation, de-rotation, and overall correction of the curve needs to be studied. The purpose of this study is to determine the effect and amount of force needed to pull on the apex of a scoliotic deformity towards the midline, and the feasibility of use of this novel potential method of correction in the treatment of patients with adolescent idiopathic scoliosis (AIS).

Methods

Measurements were taken from 20 patients with AIS treated between June, 2009, and January, 2010. There were 16 female and 4 male patients with an average age of 14.2 years (range 11–20); the coronal preoperative Cobb angle was 67° (42–108°), decreasing on bending to 39° (8–83°), and the apex of the deformity was between T6 and L2. All patients had proximal and distal anchors spanning two levels on each end; the anchors were connected by a concave rod to which the apical vertebra was pulled. We measured the distance between the rod and the apical vertebra and the rotation of the apical vertebrae.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 20 - 20
7 Aug 2024
Snuggs J Ciccione C Vernengo A Tryfonidou M Grad S Vadala G Maitre CL
Full Access

Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo sheep pilot study, NPgel (+/- NC) was injected into degenerated IVDs, blood was taken, and immune cell activation was monitored via flow cytometry over three months post-injection. Results. Within the ex vivo model, IVDs injected with NPgel (+/- NC) exhibited increased matrix expression and deposition. Viable NCs were detected post-culture, indicating survival and matrix production. In the in vivo model, NPgel injection into sheep IVDs did not significantly increase activation of immune cells compared to controls, suggesting no systemic inflammatory effects. Conclusion. NPgel, combined with NCs, shows promise for IVD regeneration. Ex vivo findings indicate NPgel supports NC survival and matrix production. Moreover, in vivo results demonstrate the absence of systemic immunogenic responses post-NPgel injection. This suggests NPgel's potential as a carrier for NCs in IVD regeneration therapy. These findings underscore NPgel's candidacy for further investigation in addressing chronic low back pain associated with IVD degeneration. Subsequent research, including long-term efficacy and safety evaluations, is imperative for clinical translation. Conflicts of interest. There are no conflicts of interest. Sources of funding. iPSpine, grant # 825925, Horizon 2020


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 32 - 32
7 Aug 2024
Raftery K Tavana S Newell N
Full Access

Introduction. Vertebral compression fractures are the most common type of osteoporotic fracture. Though 89% of clinical fractures occur anteriorly, it is challenging to replicate these ex vivo with the underlying intervertebral discs (IVDs) present. Furthermore, the role of disc degeneration in this mechanism is poorly understood. Understanding how disc morphology alters vertebral strain distributions may lead to the utilisation of IVD metrics in fracture prediction, or inform surgical decision-making regarding instrumentation type and placement. Aim. To determine the effect of disc degeneration on the vertebral trabecular bone strain distributions in axial compression and flexion loading. Methods. Eight cadaveric thoracolumbar segments (T11-L3) were prepared (N=4 axial compression, N=4 flexion). µCT-based digital volume correlation was used to quantify trabecular strains. A bespoke loading device fixed specimens at the resultant displacement when loaded to 50N and 800N. Flexion was achieved by adding 6° wedges. Disc degeneration was quantified with Pfirrmann grading and T2 relaxation times. Results. Anterior axial strains were 80.9±39% higher than the posterior region in flexion (p<0.01), the ratio of which was correlated with T2 relaxation time (R. 2. =0.80, p<0.05). In flexion, the central-to-peripheral axial strain ratio in the endplate region was significantly higher when the underlying IVDs were non-degenerated relative to degenerated (+38.1±12%, p<0.05). No significant differences were observed in axial compression. Conclusion. Disc degeneration is a stronger determinant of the trabecular strain distribution when flexion is applied. Load transfer through non-degenerate IVDs under flexion appears to be more centralised, suggesting that disc degeneration predisposes flexion-type compression fractures by shifting high strains anteriorly. Conflicts of interest. The authors declare none. Sources of funding. This work was funded by the Engineering & Physical Sciences Research Council (EP/V029452/1), and Back-to-Back


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2022
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Backgrounds and aim. Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment. Methodology. Porcine NC cells were encapsulated in 3D alginate beads to maintain their phenotype then cultured in media to mimic the healthy and degenerate disc environment, together with control NC media for 1 week. Following which viability using PI and Calcein AM, RNA extraction and RT-PCR for NC cell markers, anabolic and catabolic genes analysed. Proteomic analysis was also performed using Digiwest technology. Results. A small increase in cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in NCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Discussion. Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The initial work has been then translated to investigate the potential use of iPSCs differentiated into notochordal like cells as potential regenerative cell sources. Conflicts of interest: No conflicts of interest. Sources of funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 825925


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 16 - 16
1 Oct 2022
Nüesch A Alexopoulos L Kanelis E Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

Objectives. This study aims to investigate whether bacteria are present in intervertebral discs (IVDs) and their influence. Causality between chronic infection of the IVD and its degenerative process gained great interest recently. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in IVDs, from these 27 studies found, Cutibacterium acnes being the most abundant. However, whether bacteria identified were present in vivo or if they represent contamination remains unclear. Methods. Human IVD tissue was fixed in paraffin and Immunohistochemical stained for Gram-positive bacteria. NP cells in monolayer have been stimulated with LPS (0.1–50 µg/ml) and Peptidoglycan (0.1–50 µg/ml) for 24, 48 and 72 hrs to investigate their influence. The concentration of proinflammatory and catabolic cytokines in the media is being measured using ELISA. RNA extracted and RT-qPCR utilised for factors associated with disc degeneration matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors. Results. Bacteria were detected within IVD tissue. Bacteria was internalized by the NP cells and influenced the nuclei morphology. Preliminary results of the exposure of NP cells to bacterial components demonstrate that ADAMTS4 as well as IL-8 were showed an increase in gene expression after LPS and peptidoglycan treatment compared to the non-treated control. Underlining these results, IL-8 protein was increased in treated groups, whereas peptidoglycan treated groups showed a dose dependence. Conclusion. This study demonstrates that Gram positive bacteria are present within the IVD. The exposure of NP cells to peptidoglycans indicates that bacterial components trigger a stress response. Conflicts of Interest: No conflict of interest. Sources of Funding: This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 7 - 7
1 Aug 2022
Mathieu H Amani H Patten SA Parent S Aragon J Barchi S Joncas J Child A Moldovan F
Full Access

The aim of this study is to clarify the implication of ciliary pathway on the onset of the spinal curvature that occurs in Adolescent Idiopathic Scoliosis (AIS) patients through functional studies of two genes: POC5 and TTLL11. Since the genetic implication for AIS is accepted, many association and candidate gene analysis revealed the implication of ciliary genes. The characterisation of these two proteins was assessed by qPCR, WB and immunofluorescence in vitro using control cells and cells derived from AIS patients. The impact of genetic modification of these genes on the functionality of the proteins in vitro and in vivo was analysed in zebrafish model created by CRISPR/Cas9 using microCT and histologic analysis. Our study revealed that mutant cells, for both gene, were less ciliated and the primary cilia was significantly shorter compared to control cells. We also observed a default in cilia glutamylation by immunofluorescence and Western Blot. Moreover, we observed in both zebrafish model, a 3D spine curvature similar to the spinal deformation in AIS. Interestingly, our preliminary results of immunohistology showed a retinal defect, especially at the cone cell layer level. This study strongly supports the implication of the ciliary pathway in the onset of AIS and this is the first time that a mechanism is described for AIS. Indeed, we show that shorter cilia could be less sensitive to environmental factors due to lower glutamylation and result in altered signalling pathway. Identifying the biological mechanism involved is crucial for elucidating AIS pathogenesis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2019
Emanuel K Mader K Peeters M Kingma I Rustenburg C Vergroesen P Sammon C Smit T
Full Access

Purpose of study and background. Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration. Methods and Results. In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm. −1. and analyzed using multivariate curve resolution analysis. In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy. Conclusion. Three weeks of mild overloading causes measurable changes in the extracellular matrix. Increased collagen entropy indicates that remodeling of collagen is a first step into disc degeneration. We could not confirm, however, that increase in entropy was due to cell activity. FTIR imaging allows more detailed investigation of early disc degeneration than traditional measures. There are no conflicts of interest. Partially funded by Dutch Arthritis Funds, personal grant KSE


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. Results. We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. Conclusion. Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328–339


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect.

Methods

This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims

CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration.

Methods

We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.