Advertisement for orthosearch.org.uk
Results 1 - 20 of 54
Results per page:
Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 99 - 99
4 Apr 2023
Lu V Tennyson M Fortune M Zhou A Krkovic M
Full Access

Fragility ankle fractures are traditionally managed conservatively or with open reduction internal fixation (ORIF). Tibiotalocalcaneal (TTC) fusion is an alternative option for the geriatric patient. This systematic review and meta-analysis provides a detailed analysis of the functional and clinical outcomes of hindfoot nailing for fragility ankle fractures presented so far in the literature. A systematic search was performed on MEDLINE, EMBASE, Cochrane Library, Scopus, Web of Science, identifying fourteen studies for inclusion. Studies including patients over 60 with a fragility ankle fracture, treated with TTC nail were included. Patients with a previous fracture of the ipsilateral limb, fibular nails, and pathological fractures were excluded. Subgroup analyses were performed according to (1) open vs closed fractures, (2) immediate post-operative FWB vs post-operative NWB, (3) majority of cohort are diabetics vs minority of cohort are diabetics. Meta-regression analyses were done to explore sources of heterogeneity, and publication bias was assessed using Egger's test. The pooled proportion of superficial infection, deep infection, implant failure, malunion, and all-cause mortality was 0.10 (95%CI:0.06-0.16; I2=44%), 0.08 (95%CI:0.06-0.11, I2=0%), 0.11 (95%CI:0.07-0.15, I2=0%), 0.11 (95%CI:0.06-0.18; I2=51%), and 0.27 (95%CI:0.20-0.34; I2=11%), respectively. The pooled mean post-operative OMAS score was 54.07 (95%CI:48.98-59.16; I2=85%). The best-fitting meta-regression model included age and percentage of male patients as covariates (p=0.0263), and were inversely correlated with higher OMAS scores. Subgroup analyses showed that studies with a majority of diabetics had a higher proportion of implant failure (p=0.0340) and surgical infection (p=0.0096), and a lower chance of returning to pre-injury mobility than studies with a minority of diabetics (p=0.0385). Egger's test (p=0.56) showed no significant publication bias. TTC nailing is an adequate alternative option for fragility ankle fractures. However, current evidence includes mainly case series with inconsistent outcome measures reported and post-operative rehabilitation protocols. Prospective RCTs with long follow-up times and large cohort sizes are needed to clearly guide the use of TTC nailing for ankle fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 108 - 108
4 Apr 2023
Wen Z Ding Y Lin S Li C Ouyang Z
Full Access

As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis. Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and immunofluorescence assay were conducted to explore the role of p110δ. Sequentially, KLF4 was predicted as the transcription factor of p110δ and the relation was confirmed by dual luciferase reporter assay. Next, assays including RT-PCR, western blotting and flow cytometry were performed to ensure the specific role of KLF4. Finally, TiPs-induced mice cranial osteolysis model was established, and micro-CT scanning and immunohistochemistry assay were performed to reveal the role of p110δ and KLF4 in vivo. Here, we found that p110δ was upregulated in TiPs-stimulated macrophages. The inhibition of p110δ or knockdown of p110δ could significantly dampen the TiPs-induced secretion of TNFα and IL-6. Further mechanistic studies confirmed that p110δ was responsible for TNFα and IL-6 trafficking out of Golgi complex without affecting their expression in TiPs-treated macrophages. Additionally, we explored the upstream regulators and confirmed that Krüppel-like factor 4 (KLF4) was the transcription repressor of p110δ. Apart from that, KLF4, targeted by miR-92a, could also attenuate TiPs-induced inflammation by mediating NF-κB pathway and M1/M2 polarization. By the establishment of TiPs-induced mice cranial osteolysis model, we found that KLF4 knockdown exacerbated TiPs-induced osteolysis which was strikingly ameliorated by knockdown of p110δ. In summary, our study suggests the key role of miR-92a/KLF4/p110δ signal in TiPs-induced macrophages inflammation and osteolysis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 92 - 92
17 Apr 2023
Raina D Mrkonjic F Tägil M Lidgren L
Full Access

A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones. Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups. CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material. We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 73 - 73
14 Nov 2024
Pérez GV Rey EG Quero LS Díaz NV
Full Access

Introduction. The identification of biological markers associated to implant failure in THA (total hip arthroplasty) patients remains a challenge in orthopedic surgery. In this search, previous studies have been mainly focused on typical mediators associated to bone metabolism and inflammation. Our group has evaluated changes in serum levels of insulin-like growth factor binding protein-1 (IGFBP-1), a protein which is not directly related to bone homeostasis, in patients undergoing THA. Method. We assessed IGFBP-1 levels in serum obtained from 131 patients (58% female, 42 % male; age: 68 ± 13 years) who underwent THA in the Orthopedic Surgery and Traumatology Department of our institution. In this cohort, 57% of patients had metal on polyethylene (MoP) as hip-bearing surface combination, 17 % had ceramic on ceramic (CoC) and 26% of them did not have any prosthesis. A test based on an enzyme-linked immunosorbent assay (ELISA) was used to determine IGFBP-1 levels in serum obtained from these patients. Result. Our results showed a significant increase in IGFBP- 1 levels in MoP group as compared to CoC and control groups, in which no differences in quantified levels were detected. Further analysis revealed no significant differences in IGFBP-1 between cemented and non-cemented MoP bearings. We performed a ROC curve to evaluate the accuracy of serum IGFBP-1 in discriminating MoP from the rest of patients (area under the curve: 0.7; 95% confidence interval: 0,6-0.8; p<0.05) and established a cut-off value of 10.2 ng/ml, according to the Youden´s Index. Logistic regression analysis showed that patients with MoP bearing surfaces had a higher risk of increased IGFBP- 1 levels in serum (p<0.05, Odds Ratio: 6.7, 95% Confidence Interval 3.1 to 14.8). Conclusion. IGFBP- 1 levels are significantly elevated in THA patients with MoP bearing surfaces, suggesting that this protein might be a reliable biomarker for the outcome of patients implanted with MoP


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 38 - 38
17 Apr 2023
Saiz A Hideshima K Haffner M Rice M Goupil J VanderVoort W Delman C Hallare J Choi J Shieh A Eastman J Wise B Lee M
Full Access

Determine the prevalence, etiologies, and risk factors of unplanned return to the OR (UROR) in adult orthopaedic trauma patients. Retrospective review of a trauma prospective registry from 2014 – 2019 at a Level 1 academic hospital. An UROR was defined as a patient returning to OR unexpectedly following a planned definitive surgery to either readdress the presenting diagnosis or address a complication arising from the index procedure. Univariate and multivariate logistic regression was performed comparing those patients with an UROR versus those without. A total of 1568 patients were reviewed. The rate of UROR was 9.8% (153 patients). Symptomatic implant was the leading cause of UROR (60%). Other significant UROR causes were infection (15%) and implant failure (9%). The median time between index procedure and UROR was 301 days. For the univariate and multivariate analysis, open fracture (p< 0.05), fracture complexity (p<0.01), and weekend procedure (p< 0.01) were all associated with increased risk of UROR. All other variables were not statistically significant for any associations. Those patients with an UROR for reasons other than symptomatic implants were more likely to have polyorthopaedic injuries (p < 0.05), ISS > 15 (p < 0.05), osteoporosis (p < 0.01), ICU status (p < 0.05), psychiatric history (p < 0.05), compartment syndrome (p < 0.05), neurovascular injury (p < 0.01), open fracture (p < 0.05), and fracture complexity (p < 0.05). The rate of UROR in the orthopaedic trauma patient population is 10%. Most of these cases are due to implant-related issues. UROR for reasons other than symptomatic implants tend to be polytraumatized patients with higher-energy injuries, multiple complex fractures, and associated soft tissue injuries. Future focus on improved implant development and treatments for polytraumatized patients with complex fractures is warranted to decrease a relatively high UROR rate in orthopaedic trauma


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation. Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA. Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3). Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 33 - 33
2 Jan 2024
Emonde C Reulbach M Evers P Behnsen H Nürnberger F Jakubowitz E Windhagen H
Full Access

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery. A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (T. G. ) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its T. G. We aimed to investigate the effect of fluid absorption on the T. G. (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks. Samples stored in Ringer's solution exhibited lower T. G. and VST than those stored in air. After 8 weeks, the T. G. decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal. Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 129 - 129
14 Nov 2024
Larsen JB Skou ST Laursen M Bruun NH Bandholm T Arendt-Nielsen L Madeleine P
Full Access

Introduction. There is a lack of evidence-based treatments for patients with chronic pain after total knee arthroplasty (TKA). It is well-established that knee extensor and flexor muscle strength are markedly impaired following TKA, but no studies have examined muscle strength and power in patients with chronic pain after TKA. Therefore, the aim was to investigate if neuromuscular exercises and pain neuroscience education (PNE) were superior to PNE alone for improvement of muscle strength and power in patients with chronic pain after TKA. Method. This report presents the exploratory analysis of a randomized controlled trial (NCT03886259). Participants with chronic moderate-to-severe average daily pain intensity and no signs of prosthesis failure at least one year after primary TKA were included. Participants were randomized to receive either supervised neuromuscular exercise and PNE or the same PNE sessions alone. The outcomes were changes from baseline to 12-months for peak leg extension power and maximum muscle strength, measured during maximal voluntary isometric contractions, for the knee extensors and flexors. Result. Sixty-nine participants (age 62.2±7.2, 40 females) were included. No between-group differences were observed for peak leg extension power (difference 13.6 Watts, 95% CI -22.2 to 49.3), maximum knee extensor muscle strength (difference -20.9 Newtons, 95% CI -65.8 to 24.0) or maximum knee flexor muscle strength (difference 8.6 Newtons, 95% CI -11.9 to 29.1). Peak leg extension power (26.3 Watts, 95% CI 4.3 to 48.3) and maximum knee flexor muscle strength (19.7 Newtons, 95% CI 7.6 to 31.9) improved significantly in the neuromuscular exercise and PNE group with no significant improvements observed in the PNE alone group. Conclusion. Neuromuscular exercise and PNE did not improve muscle strength and power compared to PNE alone in patients with chronic pain after TKA. Acknowledgements. This study was funded by the Danish Rheumatism Association, the Svend Andersen Foundation and Lions Club Denmark


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 34 - 34
2 Jan 2024
Díaz-Payno P Llorca J Lantada A Patterson J
Full Access

Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide. [1]. , and represents a significant economic burden to patients and society. [2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine. [3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair. [4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint. [5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA). [6]. Such framework can be 3D printed to produce anatomically accurate implants. [7]. , attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures. [8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC. Acknowledgments: This project has received funding from the European Union's Horizon Europe research and innovation MSCA PF programme under grant agreement No. 101110000


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 31 - 31
11 Apr 2023
Powell D Wu B Dietz P Bou-Akl T Ren W Markel D
Full Access

Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model. NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the intercondylar notch. S. aureus (SA) was introduced by both direct injection of 10 μl broth (1 × 10. 4. CFU) into the medullary cavity and single dip of Ti pins into a similar solution prior to insertion. Rats were sacrificed at 8 and 16 weeks after surgery. The outcome measurements include μCT based quantitative osteolysis evaluation and hard tissue histology. Results: EM-NF coating (EM100 and EM1000) reduced osteolysis at 8 and 16 weeks, compared to EM0 and negative control. The effective infection control by EM-NFs was further confirmed by hard tissue section analysis. The Bone implant contact (BIC) and bone area fraction Occupancy (BAFO) within 200 µm of the surface of the pins were used to evaluate the osseointegration and new bone formation around the implants. At 16 weeks, the bone implant contact (BIC) of EM 100 (35.08%) was higher than that of negative control (3.43%) and EM0 (0%). The bone area fraction occupancy within 200 µm (BAFO) of EM100 (0.63 mm2) was higher than that of negative control (0.390 mm2) and EM0 (0.0 mm. 2. ). The BAFO of EM100 was also higher than that of EM1000 (0.3mm. 2. ). There was much less osteolysis observed with EM100 and EM1000 NF coatings at 16 weeks, as compared to EM0 positive control, p=0.08 and p=0.1, respectively. Osseointegration and periprosthetic bone formation was enhanced by EM-NFs, especially EM100. Data from this pilot study is promising for improving implant surface fabrication strategies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective. Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice. Materials and Methods. This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months. Results. At 12 months five patients (12%) suffered a postoperative lateral wall fracture, while in 37 patients (88%) the lateral femoral wall remained intact. The mean preoperative LWT of patients with a postoperative lateral wall fracture was 18.04 mm (SD ± 1.58) compared to 26.22mm (SD ± 5.93) in the group without a lateral wall fracture. All patients with post-operative lateral femoral wall fracture belong to 31A2 group, while 78.4% of the patients that did not develop post-operative lateral femoral wall fracture belong to 31A1 group. Eighty percent of patients in group (A) experienced shortening, collapse, shaft medialization and varus deformity. The mean Harris hip score of group (A) was 39.60 at 3 months and 65.67 at 6 months postoperatively, while that of group (B) was 80.75 and 90.65 at 3 and 6 months respectively, denoting a statistically significant difference (P<0.001). Treatment failure meriting a revision surgery was 40 % in group (A) and 8% in group (B) denoting a statistically significant difference (p<0.001). The cut-off point of LWT below which there is a high chance of post-operative lateral wall fracture when fixed with DHS is 19.6mm. This was shown on the receiver operating curve (ROC) by plotting the sensitivity against the 100 % specificity with a set 95% confidence interval 0.721 – 0.954. When lateral wall thickness was at 19.6 mm, the sensitivity was 100% and specificity was 81.8%. The area under the curve (AUC) was 0.838, which was statistically significant (P = 0.015). Conclusions. Preoperative measurement of LWT in elderly patients with intertrochanteric hip fractures is decisive. The cut off point for postoperative lateral wall fracture according to our study is 19.6 mm; hence, intramedullary fixation has to be considered in this situation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 58 - 58
17 Nov 2023
Huang D Buchanan F Clarke S
Full Access

Abstract. Objectives. Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis. Methods. A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics. Results. There were 112 responses. Eight participants had not been diagnosed with osteoporosis and therefore did not meet the study criteria. Of the remaining 104, 102 were female and 2 were male and 102 were white (2 chose not to disclose their ethnicity). The majority of participants were aged 55–64 (34.6%) or 65–74 (37.5%), were college/university educated (38.5%) and had previously sustained a fragility fracture (52.9%). Only 3.9% of participants had heard of bioresorbable fracture fixation devices compared to 62.5% for metal devices. Most people were unsure if they would trust one type of device over the other (58.7%) and would ask for more information if their surgeon were to suggest using a bioresorbable device to fix their fracture (61.5%). The most commonly reported concerns were about device safety and efficacy: toxicity of the degradation products and the device breaking down too early before the fracture had healed. Two participants cited environmental concerns about increased use of plastics as a reason they would decline such a device. Conclusions. As expected, participants had little to no knowledge of bioresorbable polymer fixation devices. In general, they were willing to be guided by their surgeon but would require supporting information on the safety and efficacy of their long-term use. The results of this study show that it will be important to have relevant and understandable information to give patients when recommending these devices as treatments to ensure and support a shared-decision approach to patient care. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2021
Al-Rub ZA Tyas B Singisetti K
Full Access

Introduction and Objective. Evidence in literature is contradicting regarding outcomes of total knee arthroplasty (TKA) in post-traumatic osteoarthritis (PTOA) and whether they are inferior to TKA in primary osteoarthritis (OA). The aim of this review was to find out if any difference exists in the results of TKA between the two indications. Materials and Methods. The electronic databases MEDLINE, EMBASE, The Cochrane Collaboration, and PubMed were searched and screened in duplicate for relevant studies. The selected studies were further subjected to quality assessment using the modified Coleman method. The primary outcome measure was patient reported outcome, and secondary outcome measures were infection, revision, stiffness, and patella tendon rupture. Results. A total of 18 studies involved 1129 patients with a mean age of 60.6 years (range 45.7–69) and follow up of 6.3 years. The time interval from index injury to TKA was 9.1 years. Knee Society Score (KSS) in PTOA reported in 12/18 studies showed functional improvement from 42.5 to 70 post-TKA exceeding minimally clinically important difference. In TKA for primary OA vs PTOA, deep peri-prosthetic joint infection (PJI) was reported in 1.9% vs 5.4% of patients, whilst revision of prosthesis at an average of 6 years post-operatively was performed in 2.6 vs 9.7% of patients. Conclusions. TKA is a successful treatment option for PTOA. However, the risk of significant complications like PJI and implant failure requiring revision is higher than primary OA cases. Patients should be counselled about those risks. Further well-designed comparative cohort-matched studies are needed to compare outcomes between the two populations


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2021
Pareatumbee P Yew A Koh JSB Howe TS Abidin SZ Tan MH
Full Access

Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A comparative analysis against literature was performed to validate the intact model. Statistical analysis of the peak von Mises stress values collected from predicted stress contour plots was performed using a one-way repeated measure of analysis of variance (with a Bonferroni post hoc test) using SPSS Statistics 26. The average change in stress of the resected models from the intact state were then determined. Results. The validation of the intact humerus displayed a good agreement with literature values. The peak bone stress occurred distally above the coronoid and olecranon fossa closer to the load application region in the intact and resected bone models with a significant amount of loading borne by the cortical bone, while the peak implant stress occurred at the bone-prosthesis contact interface under both loading conditions. Based on the results obtained, a statistically significant difference (p =.013) in implant stress was only seen to occur between groups B and C under tension. Results illustrate initiation of stress shielding with the bone bearing lesser stress with increasing resection length which may eventually lead to implant failure by causing bone resorption according to Wolff's law. The peak implant stress under torsion was 3–5 times the stress under tension. The best biomechanical behaviour was exhibited in Group D, having the least average change in stress from the intact model, 5% and 3.8% under tension and torsion respectively. It can be deduced that the shorter the prosthesis length, the more pronounced the effect on cortical bone remodelling. With the maximum bone and implant stresses obtained being less than their yield strength, it can be concluded that the bone-implant construct is safe from failure. Conclusions. The developed FE models verified the influence of varying the prosthesis length on the bone and implant stresses and predicted signs of stress shielding in longer endoprostheses. By allowing for 2 cm shortening in the upper extremity and post-surgical scarring, it is beneficial to err towards a shorter endoprosthesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 87 - 87
1 Mar 2021
Bommireddy L Crimmins A Gogna R Clark DI
Full Access

Abstract. Objectives. Operative management of distal humerus fractures is challenging. In the past, plates were manually contoured intraoperatively, however this was associated with high rates of fixation failure, nonunion and metalwork removal. Anatomically pre-contoured distal humerus locking plates have since been developed. Owing to the rarity of distal humeral fractures, literature regarding outcomes of anatomically pre-contoured locking plates is lacking and patient numbers are often small. The purpose of this study is to investigate the outcomes of these patients. Methods. We retrospectively identified patients with distal humeral fractures treated at our institution from 2009–2018. Inclusion criteria were patients with a distal humeral fracture, who underwent two-column plate fixation with anatomically pre-contoured locking plates. Clinical records and radiographs were reviewed to elicit outcome measures, including range of motion, complications and reoperation rate. Results. We identified 50 patients with mean age of 55 years (range 17–96 years). Mean length of follow up was 5.2 years. AO fracture classification Type A occurred most frequently (46%), followed by Type B (22%) and Type C (32%). Low energy mechanisms of injury predominated in 72% of patients. Mean time from injury to fixation was seven days. Mean range of motion at the elbow was 13–123o postoperatively. The overall reoperation rate was 22%, the majority of which required subsequent removal of prominent metalwork (18%). The incidence of nonunion, heterotopic ossification, deep infection and neuropathy requiring decompression was 2% each. Fixation failure occurred in only one patient however the fracture went on to heal. Conclusions. Previously reported reoperation rates with manually contoured plates were as high as 44%, which is twice our reported rate. Modern locking plates are no longer subject to implant failure (previously 27% reported metalwork failure rate). Likewise, heterotopic ossification and non-union have also reduced, highlighting that modern plates have significantly improved overall patient outcomes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 68 - 68
1 Dec 2020
Taylan O Slane J Ghijselings I Delport HP Scheys L
Full Access

Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure. 1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome. 2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments. 3. . Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated. 4. and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05). Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01). Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes. In conclusion, to further prove the success of PIPB, further biomechanical studies are required to evaluate the success rate of PIPB technique in different implant designs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 75 - 75
1 Jan 2017
Anand A Li L Trigkilidas D Patel A
Full Access

We performed a systematic review to compare outcomes of cemented versus uncemented trapezio-metacarpal joint (TMCJ) replacement for treatment of base-of-thumb arthritis. We assessed improvements in pain and function, range of movement (ROM), strength, complications and need for revision surgery. A thorough literature search was performed. A total of 481 studies were identified from the literature search (179 Medline, 253 Embase, 27 CINAHL, 22 Cochrane). Of 43 relevant titles 28 were selected for full-text review after assessment of the abstracts. Duplicate studies were removed. 18 studies met inclusion criteria on full-text review. All studies were of level IV evidence. There were no randomised controlled trials or meta-analyses. The studies were critically appraised using a validated scoring system. Most studies reported good outcomes for pain and strength, and functional outcome was comparable for both groups. ROM was generally improved for both prosthetic types, however statistical calculation was lacking in many studies. Trapezial component loosening was the main problem for both cemented and uncemented prostheses, however radiological loosening did not necessarily correlate with implant failure. This systematic review has found that both cemented and uncemented replacements generally give good outcomes for the treatment of TMCJ arthritis, however young, male, patients with manual occupations and with disease in the dominant hand and patients with poor trapezial bone stock appear to be at higher risk for implant failure due to cup loosening. We recommend the construction of a joint registry to record implantation and revision rates


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 81 - 81
1 Nov 2018
Gueorguiev B
Full Access

Locking plates have led to important changes in bone fracture management, allowing flexible biological fracture fixation based on the principle of an internal fixator. The technique of locking plate fixation differs fundamentally from conventional plating and has its indications and limitations. Most of the typical locking plate failure patterns are related to basic technical errors, such as under-sizing of the implant, too short working length, and imperfect application of locking screws. After analysis of the fracture morphology and intrinsic stability following fracture reduction, a meticulous preoperative planning is mandatory under consideration of the principles of the internal fixator technique to avoid technical errors and inaccuracies leading to early implant failure