Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral intercondylar notch can also occur during extension. The goal of this study was to use dynamic simulations to explore sensitivity of tibial post loading to
Common post-operative problems in shoulder arthroplasty such as glenoid loosening and joint instability can be reduced by improvements in glenoid design shape, material choice and fixation method [1]. Innovation in shoulder replacement is usually carried out by introducing incremental changes to functioning implants [2], possibly overlooking other successful design combinations. We propose an automated framework for parametric analysis of
Introduction:. Varus alignment of the knee is common in patients undergoing unicondylar knee replacement. To measure the geometry and morphology of these knees is to know whether a single unicondylar knee implant design is suitable for all patients, i.e. for patients with varus deformity and those without. The aim of this study was to identify any significant differences between normal and varus knees that may influence unicondylar
Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and
Introduction:. Patient specific instrumentation (PSI) generates customized guides from a magnetic resonance imaging based preoperative plan for use in total knee arthroplasty (TKA). PSI software must be able to accommodate differences in
Introduction. Survival rates of recent total ankle replacement (TAR) designs are lower than those of other arthroplasty prostheses. Loosening is the primary indication for TAR revisions [NJR, 2014], leading to a complex arthrodesis often involving both the talocrural and subtalar joints. Loosening is often attributed to early implant micromotion, which impedes osseointegration at the bone-implant interface, thereby hampering fixation [Soballe, 1993]. Micromotion of TAR prostheses has been assessed to evaluate the stability of the bone-implant interface by means of biomechanical testing [McInnes et al., 2014]. The aim of this study was to utilise computational modelling to complement the existing data by providing a detailed model of micromotion at the bone-implant interface for a range of popular implant designs, and investigate the effects of implant misalignment during surgery. Methods. The geometry of the tibial and talar components of three TAR designs widely used in Europe (BOX®, Mobility® and SALTO®; NJR, 2014) was reverse-engineered, and models of the tibia and talus were generated from CT data. Virtual implantations were performed and verified by a surgeon specialised in ankle surgery. In addition to the aligned case, misalignment was simulated by positioning the talar components in 5° of dorsi- or plantar-flexion, and the tibial components in ± 5° and 10° varus/valgus and 5° and 10° dorsiflexion; tibial dorsiflexed misalignement was combined with 5° posterior gap to simulate this misalignment case. Finite element models were then developed to explore bone-implant micromotion and loads occurring in the bone in the implant vicinity. Results. Micromotion and bone loads peaked at the end of the stance phase for both the tibial and talar components. The aligned BOX and SALTO demonstrated lower tibial micromotion (with under 30% of bone-implant interface area subjected to micromotion larger than 100µm, as opposed to > 55% for Mobility; Figure 1). Talar micromotion was considerably lower for all designs, and no aligned talar component demonstrated micromotion larger than 100µm. The aligned SALTO showed the largest talar micromotion (Figure 2). Dorsiflexed implantation of all tibial components increased micromotion and bone strains compared to the reference case; interestingly, the SALTO tibial component, which demonstrated the lowest micromotion for the aligned case, also demonstrated the smallest changes in micromotion due to malpositioning (Figure 3). The posterior gap between the tibia and implant further increased bone strains. Dorsi- or plantar-flexed implantation of all talar components considerably increased micromotion and bone loads compared to the reference case (Figure 2), often resulting in micromotion exceeding 100µm. The SALTO talar component demonstrated the smallest changes in micromotion due to malpositioning. Discussion. The aligned Mobility had greater tibial micromotion than the SALTO and BOX, which agrees with higher revision rates reported in registry data (e.g. NZJR, 2014). The increased micromotion associated with dorsi- or plantar-flexion misalignment highlights the importance of aligning the implant correctly, and implies that SALTO can be more “forgiving” for malpositioning than the other TAR designs.
Introduction. Malpositioning of the tibial component is a common error in TKR. In theory, placement of the tibial tray could be improved by optimization of its design to more closely match anatomic features of the proximal tibia with the motion axis of the knee joint. However, the inherent variability of tibial anatomy and the size increments required for a non-custom implant system may lead to minimal benefit, despite the increased cost and size of inventory. This study was undertaken to test the hypotheses:
. 1. That correct placement of the tibial component is influenced by the design of the implant. 2. The operative experience of the surgeon influences the likelihood of correct placement of contemporary designs of tibial trays. Materials and Methods. CAD models were generated of all sizes of 7 widely used designs of tibial trays, including symmetric (4) and asymmetric (3) designs. Solid models of 10 tibias were selected from a large anatomic collection and verified to ensure that they encompassed the anatomic range of shapes and sizes of Caucasian tibias. Each computer model was resected perpendicular to the canal axis with a posterior slope of 5 degrees at a depth of 5 mm distal to the medial plateau. Fifteen joint surgeons and fourteen experienced trainees individually determined the ideal size and placement of each tray on each resected tibia, corresponding to a total of 2030 implantations. For each implantation we calculated: (i) the rotational alignment of the tray; (ii) its coverage of the resected bony surface, and (iii) the extent of any overhang of the tray beyond the cortical boundary. Differences in the parameters defining the implantations of the surgeons and trainees were evaluated statistically. Results. On average, the tibial tray was placed in 5.5 ± 3.1° of external rotation. The overall incidence of internal rotation was only 4.8%: 10.5% of trainee cases vs. 0.7% of surgeon cases (p < 0.0001). The incidence of internal rotation varied significantly with
Introduction. Many prosthetic design changes have been introduced in attempt to improve outcomes following TKA; however there is no consensus as to whether these changes confer benefits to patients. This study aimed to assess whether patients treated with a modern
Introduction. The design and manufacture of patient specific implants at Hospital for Special Surgery (HSS) was started in the fall of 1976. The first
Introduction. Many uncemented femoral implant designs have had successful outcomes in total hip arthroplasty (THA). Different uncemented stem designs achieve initial and long term stability through shape, size, coating and fit. There is increasing emphasis on bone preservation, particularly in younger and more active patients. The desire to optimize load transfer has led to the development of short stems that seek to achieve fixation in the proximal femur. Short stems designed to achieve stability by engaging the metaphysis or the proximal femoral necks are currently in clinical use. The purpose of this study was to examine the extent to which five stems designed to achieve proximal fixation contact the bone in the proximal femur. Using three-dimensional CT models of 30 femurs, we assessed the fit, fill and contact of each of the five different implants. Methods. Using three-dimensional computerized templating software designed to navigate robotic surgery, pre-operative CT scans of 30 patients were analyzed. Each of five femoral implant designs (TRILOCK, ARC, ABGII, CITATION, ACCOLADE) was then optimized for size and fit based on manufacturer technique guide and design rationale. The proximal femoral metaphysis was divided into four zones in the axial plane. Five contact points were determined on the frontal plane using anatomical landmarks. Each zone was assessed for cortical contact and fill of the bone-implant interface. We graded contact from 1 to 5, with 5 being 100% contact. Results. In the 150 different templates analyzed significant variability existed in contact areas of the proximal femur depending on
Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of femoral
Multiple retrospective studies have compared UC with traditional bearings and shown comparable results and outcomes when looking at clinical and radiologic variables, complications rates, and implant survivorship; however, debate still exists regarding the optimum bearing surface. The present study seeks to determine whether there are any preoperative patient demographic or medical factors or anatomic variables including femoral condylar offset and tibial slope that may predict use of a UC bearing when compared to a standard CR group. The study cohort consisted of 117 patients (41 males, 76 females) who underwent primary TKA with the senior author. The implants utilized were either the CR or UC polyethylene components of the Zimmer Persona Total Knee System. Insert selection was based on intraoperative assessment of PCL integrity and soft tissue balancing. Patient demographics (age, gender, BMI) and co-morbidities (hypertension, diabetes, depression, cardiac disease, and lung disease) were recorded. Intraoperative variables of interest included extension and flexion range of motion, estimated blood loss (EBL), tourniquet time, and polyethylene and femoral component sizes. We calculated change in tibial slope and femoral condylar offset from pre- to post-surgery and computed the percentage of patients for whom an increase in tibial slope or femoral condylar offset was determined. Postoperative variables, including length of stay, complication rates and reoperation rates, were recorded. All dependent variables were compared between patients who received the UC component and patients who received the CR component. Continuous variables were assessed using independent samples t-tests, while categorical variables were compared using the chi-square test of independence.Background
Methods
Introduction. Initial large-scale clinical studies of porous tantalum implants have been generally promising with well-fixed implants and few cases of loosening [1–3]. An initial retrieval study suggests increased bone ingrowth in a modular tibial tray design compared to the monoblock design [4]. Since micromotion at the bone-implant interface is known to influence bone ingrowth [5], the goal of this study was to determine the effect of
Introduction. There is considerable interest in the orthopaedic community in understanding the multifactorial process of taper fretting corrosion in total hip arthroplasty (THA). Previous studies have identified some patient and device factors associated with taper damage, including length of implantation, stem flexural rigidity, and head offset. Due to the complexity of this phenomenon, we approached the topic by developing a series of matched cohort studies, each attempting to isolate a single
Introduction. Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant. Methods. We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA
There is great interest to provide repeatable and durable treatments for arthritis localized to one or two compartments in the cruciate-ligament intact knee. We report a series of efforts to develop and characterize an implant system for partial knee resurfacing. We studied distal femoral morphology and found that the sagittal-plane relationships between the condylar and trochlear surfaces are highly variable (Figs 1 and 2). In response, we report the design of a multi-compartmental system of implants intended to anatomically resurface any combination of compartments (Fig 3). Finally, we report the results of a pilot fluoroscopic study of the in vivo knee kinematics in patients who received medial, medial plus patellofemoral and bi-condylar knee arthroplasty. The kinematic results suggest these treatments provide a stable knee with intact cruciate ligament function. This work shows various partial knee resurfacing treatments have the potential to provide excellent knee mechanics and clinical outcomes.
With the increasing use of 3D medical imaging, it is possible to analyze 3D patient anatomy to extract features, trends and population specific shape information. This is applied to the development of ‘standard implants’ targeted to specific population groups. Human beings are diverse in their physical makeup while implants are often designed based on some key measurements taken from the literature or a limited sampling of patient data. The different implant sizes are often scaled versions of the ‘average’ implant, although in reality, the shape of anatomy changes as a function of the size of patient. The implant designs are often developed based on a certain demographic and ethnicity and then, simply applied to others, which can result in poor design fitment [1]. Today, with the increasing use of 3D medical imaging (e.g. CT or MRI), it is possible to analyze 3D patient anatomy to extract features, trends and population specific shape information. This can be applied to the development of new ‘standard implants’ targeted to a specific population group [2]. Our population analysis was performed by creating a Statistical Shape Model (SSM) [3] of the dataset. In this study, 40 full Chinese cadaver femurs and 100 full Caucasian cadaver femurs were segmented from CT scans using Mimics®. Two different SSMs, specific to each population, were built using in-house software tools. These SSMs were validated using leave-one-out experiments, and then analyzed and compared in order to enhance the two population shape differences.INTRODUCTION
PATIENTS & METHODS
The number of young patients undergoing total knee arthroplasty is rapidly increasing. Long-term follow-up of modern type implants is needed to provide a benchmark of implant longevity for these patients. Between January 1995 and October 1997, 245 consecutive total knee arthroplasties were performed in 217 patients by a single surgeon. In 156 knees, the Genesis I implant was used, and in 89 knees the Genesis II implant was used. Mean age at surgery was 69.3 years for the Genesis I cohort and 66 years for the Genesis II (p = 0.016). At 15 to 17 years, cumulative survivorship was calculated using Kaplan-Meier statistics whilst outcomes were rated with the ‘Knee society score’ and with the ‘Knee Injury and Osteoarthritis Outcome Score’. Radiological assessment included coronal alignment measured on full leg standing X-rays, and analysis of radiolucent lines and polyethylene thickness on AP, Lateral and Axial X-rays, positioned under fluoroscopic control.Background:
Methods:
In DDH cases often have high anteversion. They also often have high hip center. THA for those cases sometimes requires subtrochanteric derotational/shortening osteotomy. To achieve good results of the surgery, accurate preoperative planning based on biomechanics of the high anteversion cases, method for accurate application of the plan, and stable fixation are very important. At ISTA 2008, we have reported that the location of the anteversion exist several centimeters below the lesser trochanter. Independently from the extent of anteversion, femoral head, grater trochanter, and lesser trochanter are aligned in the same proportion. We have also reported in 2007, in improper high anteversion cases, many cases grow osteophytes posterior side of femoral head to reduce it functionally. In 2014, we reported about development of the stem for subtrochanteric osteotomy. (ModulusR)[Fig.1] In the present study, we established systematic planning way for estimate proper derotation and shortening and apply it for the surgery. Leg alignment during walking were well observed. According to the CT, 3D geometry of the femur, anteversion in hip joint and its compensation by the osteophyte, and knee rotation were measured. It was divided into proximal part and distal part at several centimeter below the lesser trochanter. Adequate hip local anteversion was determined by local original anteversion – compensation if IR-ER can be done. Keeping that anteversion for the proximal part, distal part was rotated as knee towards front. Thus derotation angle was decided. Using 3D CAD (Magics®) proper size of Modulus R was selected and overlapping with canal was extracted then its center of gravity was calculated. This level is decided as the height of osteotomy to obtain equal fixation to both proximal and distal part.[Fig.2] If the derotation angle is less than 15 degree, modular neck adjustment was selected first. By trial reduction and motion test, according to the instability osteotomy was performed. In the high hip center cases, original hip center was reconstructed. Shortening length was determined not to make leg elongation more than 3cm. ModulusR were used for the replacement and fixation of the osteotomy.Introduction
Methods
Femoral knee implants have promising outcomes, although some high-flex designs have shown rather high loosening rates (Han et al., 2007). In uncemented implants, it is vital to limit micromotions at the implant-bone interface, to facilitate secondary fixation through bone ingrowth (kienapfel et al., 1999). Hence, it is essential to investigate how micromotions of different uncemented implants are affected by various loading conditions when a range of bone qualities as a patient-related factor is applied. Using finite element (FE) analysis, we simulated implant-bone interface micromotions during four consecutive cycles of normal gait and squat movements. An FE model of a distal femur was generated based on calibrated CT-scans, after which Sigma® and LCS® Cruciate-Retaining Porocoat® components (DePuy Synthes, Leeds, UK) were implanted. Using a frictional contact algorithm (µ=0.95), an initial press-fit fixation was simulated, which was previously validated against experimental data. The micromotions were calculated by tracking the projection of implant nodes on the bone surface excluding overhang area. The applied loading patterns were based on discretized simulations, providing incremental loads for each activity based on implant-specific kinematics, which was derived from Orthoload database using inverse dynamics (Fitzpatrick et al., 2012). This provided the opportunity to calculate incremental micromotions, but also the resulting micromotions for each single cycle, for both activities. In addition, the percentage of implant surface area with resulting micromotions less than a defined threshold was calculated. Regardless of the type of loading, in all simulations, the predicted micromotions were highest in the first cycle, suggesting settling of the implant during initial cycle. The Sigma®implant displayed a 30% larger area with micromotions below the threshold of 5 microns, for both loading conditions (Fig. 1A). The highest micromotions occurred at the anterior flange, regardless of type of activity or design. Squatting had a more detrimental effect on the primary stability, with smaller areas of low micromotions as compared to the gait load (Fig. 1B). Bone stiffness had a minor effect, which was more apparent for squatting (Fig. 1B). We found acceptable low ranges of micromotions in both implant designs, although demanding activities such as squatting generated higher motions. In addition, LCS® experienced higher micromotions, probably caused by the smaller contact area at bone-implant interface compared with Sigma®. Nevertheless, the predicted micromotions were all below the clinically relevant threshold for bone ingrowth (<40 microns) (kienapfel et al., 1999). Furthermore, our simulated settling behavior stresses the necessity for simulating multiple loading cycles, rather than just a single cycle. The effect of bone stiffness was evident, but only to a limited extent. The main current limitation of our study is the utilization of an elastic material model for the bone which is probably the reason to predict a low range of micromotions. We are planning to make the material model more realistic, by including plasticity and viscoelastic bone behavior.