Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Cemented THA has become an extremely successful operation with excellent long-term results. Although showing decreasing popularity in North America, it always remained a popular choice for the elderly patients in Europe and other parts of the world. Various older and recent studies presented excellent long-term results, for cemented fixation of the cup as well as the stem. Besides optimal component orientation, a proper cementing technique is of major importance to assure longevity of implant fixation. Consequently a meticulous bone bed preparation assures the mechanical interlock between the implant component, cement and the final bone bed. Pre-operative steps as proper implant sizing/ templating, ensuring an adequate cement mantle thickness, and hypotensive anaesthesia, minimizing bleeding at the bone cement interface, are of major importance. Additionally, femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the ENDO-Klinik experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2 – 5 mm, larger chips for the calcar area (6 – 8 mm), insertion of an intramedullary plug including central wire, 2 cm distal to the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressively larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Postoperative care includes usually touch down weight bearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Survivorship with a defined endpoint as any femoral revision after 10 year follow up has been reported by the Exeter group being over 90%. While survivorship for revision related to aseptic loosening being above 98%. Within the last years various other authors and institutions reported similar excellent survivorships, above 90%. In addition a long term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodelling of the allograft bone by the host skeleton. Historically it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally, the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2–5 mm, larger chips for the calcar area (6–8 mm), insertion of an intramedullary plug including central wire, 2 cm distal the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressive larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, and insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Post-operative care includes usually touch down weightbearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Survivorship with a defined endpoint as any femoral revision after 10-year follow up has been reported by the Exeter group being over 90%, while survivorship for revision as aseptic loosening being above 98%. Within the last years various other authors and institutions reported about similar excellent survivorships, above 90%. In addition, a long-term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.
Purpose:. Tuberosity healing in hemiarthroplasty for proximal humerus fractures remains problematic. Improved implant design and better techniques for tuberosity fixation have not been met with improved clinical results. The etiology for tuberosity failure is multifactorial; however thermal injury to host bone is a known effect of using polymethylmethacrylate for implant fixation. We hypothesized that the effect of thermal injury at the tuberosity shaft junction could be diminished by utilizing an impaction grafting technique for hemiarthroplasty stems. Methods:. Five matched pairs of cadaveric humeri were skeletonized and hemiarthroplasty stems were implanted in the proximal humeri in two groups. The first group had full cementation utilized from the surgical neck to 2 cm distal to the stem (cement group) and the second group had distal cementation with autologous cancellous bone graft impacted in the proximal 2.5 cm of the stem (impaction grafting group). Thermocouples were used to measure the inner cortical temperature at the tip of the stem, surgical neck, and at the level of the cement-graft interface for both treatment groups (see Fig. 1). Experiments were initiated with the humeri fully submerged in 0.9% sodium chloride and all three thermocouples registering a temperature of 37 ± 1°C. Statistical analyses were performed with a one-sided, paired t-test. Results:. The maximum recorded cortical bone temperature at the surgical neck was significantly decreased by 23% from 52.4 ± 8.1°C in the cement group to 40.4 ± 4.8°C in the impaction grafting group (p = 0.037). We identified no significant differences in maximum recorded temperature at the cement-graft interface between the impaction grafting group (44.3 ± 6.3°C) and the cement group (47.4 ± 6.4°C) (p = 0.254). A similar finding was observed between groups at the tip of the hemiarthroplasty stem (impaction grafting group 54.2 ± 5.7°C; cemented group 52.3 ± 7.3°C, p = 0.303). Conclusion:. Given the known threshold of 47°C as the onset of permanent thermal injury to bone,. 1. impaction grafting maintains the temperature at the surgical neck during cementation below this critical value.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty. Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System. This system provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are as follows: 1) fill with cement, 2) fill with cement supplemented by screws or K-wires, 3) Morsellised bone grafting (for smaller, especially contained cavitary defects), 4) Small segment structural bone graft, 5)
Femoral revision in cemented THA might include some technical difficulties, based on the loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration by incorporating and remodeling the allograft bone of the host skeleton. Historically, this was first performed and described in Exeter in 1987. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Nowadays our main indication is the Paprosky Type IIIb and Type IV. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Technical steps include:
. –. removal of failed stem and all cement rests. –. reconstruction of segmental bone defects with metal mesh (containment). –. preparation of fresh frozen femoral head allografts with bone mill. –. optimal bone chip diameter 2 to 5 mm, larger chips for the calcar area (6–8 mm). –. insertion of an intramedullary plug including central wire, 2 cm distal the stem tip. –. introduction of bone chips from proximal to distal. –. impaction started by distal impactors over central wire, then progressive larger impactors proximal. –. insertion of a stem „dummy“ as proximal impactor and space filler. –. removal of central wire. –. retrograde insertion of bone cement (0.5 Gentamycin) with small nozzle syringe, including pressurisation. –. insertion of standard cemented stem. The cement mantle is of importance as it acts as the distributor of force between the stem and bone graft while sealing the stem. A cement mantle of at least 2 mm has shown favourable results. Post-operative care includes usually touch down weight bearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to coldflow within the cement mantle, however, it could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Survivorship with a defined endpoint as any femoral revision after 10-year follow-up has been reported by the Exeter group at over 90%. While survivorship for revision defined as aseptic loosening is even greater at above 98%. Within the last years various other authors and institutions reported similar excellent survivorships, above 90%. In addition a long-term follow-up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years and 99% with the endpoint aseptic loosening.