Advertisement for orthosearch.org.uk
Results 1 - 20 of 37
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 52 - 52
10 Feb 2023
Di Bella C
Full Access

3D printing and Bioprinting technologies are becoming increasingly popular in surgery to provide a solution for the regeneration of healthy tissues. The aim of our project is the regeneration of articular cartilage via bioprinting means, to manage isolated chondral defects. Chrondrogenic hydrogel (chondrogel: GelMa + TGF-b3 and BMP6) was prepared and sterilised in our lab following our standard protocols. Human adipose-derived mesenchymal stem cells were harvested from the infrapatellar fat pad of patients undergoing total knee joint replacements and incorporated in the hydrogel according to our published protocols. The chondrogenic properties of the chondrogel have been tested (histology, immunohistochemistry, PCR, immunofluorescence, gene analysis and 2. nd. harmonic generation microscopy) in vitro and in an ex-vivo model of human articular defect and compared with standard culture systems where the growth factors are added to the media at repeated intervals. The in-vitro analysis showed that the formation of hyaline cartilage pellet was comparable between the two strategies, with a similar metabolic activity of the cells. These results have been confirmed in the ex-vivo model: hyaline-like cartilage was observed within the chondral defect in both the chondrogel group and the control group after 28 days in culture. The use of bioprinting techniques in vivo requires the ability of stem cells to access growth factors directly in the environment they are in, as opposed to in vitro techniques where these factors are provided externally at recurrent intervals. This study showed the successful strategy of incorporating chondrogenic growth factors for the formation of hyaline-like cartilage in vitro and in an ex-vivo model of chondral loss. The incorporation of chondrogenic growth factors in a hydrogel is a possible strategy for articular cartilage regeneration


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 18 - 18
1 Dec 2022
Taha M Hadden W Ibrahim M Abdelbary H
Full Access

Prosthetic joint infection (PJI) is a complex disease that causes significant damage to the peri-implant tissue. Developing an animal model that is clinically relevant in depicting this disease process is an important step towards developing novel successful therapies. In this study, we have performed a thorough histologic analysis of peri-implant tissue harvested post Staphylococcus aureus (S. aureus) infection of a cemented 3D-printed titanium hip implant in rats. Sprague-Dawley rats underwent left hip cemented 3D-printed titanium hemiarthroplasty via posterior approach under general anesthesia. Four surgeries were performed for the control group and another four for the infected group. The hip joint was inoculated with 5×10. 9. CFU/mL of S. aureus Xen36 prior to capsule closure. The animals were scarified 3 weeks after infection. The femur was harvested and underwent micro-CT and histologic analysis. Hematoxylin and eosin (H&E), as well as Masson's trichrome (MT) stains were performed. Immunohistochemistry (IHC) using rabbit antibody for S. aureus was also used to localize bacterial presence within femur and acetabulum tissue . The histologic analysis revealed strong resemblance to tissue changes in the clinical setting of chronic PJI. IHC demonstrated the extent of bacterial spread within the peri-implant tissue away from the site of infection. The H&E and MT stains showed 5 main features in infected bone: 1) increased PMNs, 2) fibrovascular inflammation, 3) bone necrosis, and 4) increased osteoclasts 5) fibrosis of muscular tissue and cartilage. Micro CT data showed significantly more osteolysis present around the infected prosthesis compared to control (surgery with no infection). This is the first clinically relevant PJI animal model with detailed histologic analysis that strongly resembles the clinical tissue pathology of chronic PJI. This model can provide a better understanding of how various PJI therapies can halt or reverse peri-implant tissue damage caused by infection


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 90 - 90
1 Oct 2022
Jensen LK Jensen HE Gottlieb H
Full Access

Aim. To describe the histopathology of the first and last debrided bone tissue in chronic osteomyelitis and answer the following research question; is the last debrided bone tissue viable and without signs of inflammation?. Method. In total, 15 patients with chronic osteomyelitis were allocated to surgical treatment using a one stage protocol including extensive debridement. Suspected infected bone tissue eradicated early in the debridement procedure was collected as a clearly infected sample (S1). Likewise, the last eradicated bone tissue was collected as a suspected non-infected sample (S2), representing the status of the bone void. In all cases, the surgeon debrided the bone until visual confirmation of healthy bleeding bone. The samples were processed for histology, i.e. decalcification and paraffin embedding, followed by cutting and staining with Haematoxylin and Eosin. Immunohistochemistry with MAC-387 antibodies towards the calprotectin of neutrophil granulocytes (NGs) was also performed and used for estimation of a neutrophil granulocyte (NG) score (0, 1, 2 or 3), by the method described for fracture related infections (1). Results. For the S1 samples the median NG score was 3 which is considered confirmatory for infection. However, following debridement the median NG score was significantly (p = 0.032) reduced to 2. Often NGs were seen as single cells, but in seven S1 samples and in one S2 sample massive NG accumulations were observed. The S1 samples showed a mix of granulation tissue, fibrosis, viable bone, and bone necrosis. The S2 samples contained viable bone tissue and occasionally (10/15) small fragments of necrotic bone or bone debris were seen. Furthermore, a large number of erythrocytes were observed in most S2 samples. Conclusions. The present study shows that the inflammatory response still existents after debridement, although the response fades from the center of infection. Therefore, sampling of debrided bone tissue for histology must be performed initially during surgery, to avoid underestimation of the inflammatory response, i.e. the NG score. The last debrided bone tissue cannot by definition be considered completely viable and caution should be made to remove blood (rinse) before intraoperative evaluation of the viability of debrided cancellous bone. Remnant necrotic bone fragments or debris could represent low-vascular hiding places for leftover bacteria. Application of local antibiotics might have a central role in clearing of these small non-viable bone pieces at the bone void interface


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 76 - 76
1 Dec 2022
Eltit F Ng T Gokaslan Z Fisher C Dea N Charest-Morin R
Full Access

Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic mononuclear stromal cells that overexpress receptor activator of nuclear factor kappa-B/ligand (RANKL). Treatment with specific anti-RANKL antibody (denosumab) was recently introduced, used either as a neo-adjuvant in resectable tumors or as a stand-alone treatment in unresectable tumors. While denosumab has been increasingly used, a percentage of patients do not improve after treatment. Here, we aim to determine molecular and histological patterns that would help predicting GCTs response to denosumab to improve personalized treatment. Nine pre-treatment biopsies of patients with spinal GCT were collected at 2 centres. In 4 patients denosumab was used as a neo-adjuvant, 3 as a stand-alone and 2 received denosumab as adjuvant treatment. Clinical data was extracted retrospectively. Total mRNA was extracted by using a formalin-fixed paraffin-embedded extraction kit and we determined the transcript profile of 730 immune-oncology related genes by using the Pan Cancer Immune Profiling panel (Nanostring). The gene expression was compared between patients with good and poor response to Denosumab treatment by using the nSolver Analysis Software (Nanostring). Immunohistochemistry was performed in the tissue slides to characterize cell populations and immune response in CGTs. Two out of 9 patients showed poor clinical response with tumor progression and metastasis. Our analysis using unsupervised hierarchical clustering determined differences in gene expression between poor responders and good responders before denosumab treatment. Poor responding lesions are characterized by increased expression of inflammatory cytokines as IL8, IL1, interferon a and g, among a myriad of cytokines and chemokines (CCL25, IL5, IL26, IL25, IL13, CCL20, IL24, IL22, etc.), while good responders are characterized by elevated expression of platelets (CD31 and PECAM), coagulation (CD74, F13A1), and complement classic pathway (C1QB, C1R, C1QBP, C1S, C2) markers, together with extracellular matrix proteins (COL3A1, FN1,. Interestingly the T-cell response is also different between groups. Poor responding lesions have increased Th1 and Th2 component, but good responders have an increased Th17 component. Interestingly, the checkpoint inhibitor of the immune response PD1 (PDCD1) is increased ~10 fold in poor responders. This preliminary study using a novel experimental approach revealed differences in the immune response in GCTs associated with clinical response to denosumab. The increased activity of checkpoint inhibitor PD1 in poor responders to denosumab treatment may have implications for therapy, raising the potential to investigate immunotherapy as is currently used in other neoplasms. Further validation using a larger independent cohort will be required but these results could potentially identify the patients who would most benefit from denosumab therapy


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 19 - 19
1 Dec 2022
Eltit F Wang Q Xu S Satra M Liu D Wang R Charest-Morin R Cox M
Full Access

One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM. Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization. By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of proteoglycans as decorin. Immunohistochemistry of biopsies revealed that PC-cells inside bone organize into two manners: i) glandular-like structures where cells maintain their polarization in the expression of prostate markers, ii) diffuse infiltrate that spreads along bone surfaces, with loss of cell polarity. These cells take direct contact with osteoblasts in the surface of trabecula. We define that PCBM are mostly composed by AR+ with some double negative cells. We did not observe neuroendocrine phenotype cells. PCBMs generate predominantly osteoblastic lesions that are characterized by high lacunar density, lack of collagen organization and elevated proteoglycan content. These structural changes are associated with the infiltration of PC cells that are mostly androgen-dependent but have lost their polarization and contact directly with osteoblasts, perhaps altering their function. These changes could be associated with lower mechanical properties that led to fracture and weakness of the PCBM affected bone


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 95 - 95
1 Dec 2022
Jirovec A Flaman A Purgina B Diallo JS Werier JM
Full Access

The poor prognosis of patients with soft-tissue sarcoma as not changed in the past several decades, highlighting the necessity for new therapeutic approaches. T-cell based immunotherapies are a promising alternative to traditional cancer treatments due to their ability to target only malignant cells, leaving benign cells unharmed. The development of successful immunotherapy requires the identification and characterization of targetable immunogenic tumor antigens. Cancer-testis antigens (CTA) are a group of highly immunogenic tumor-associated proteins that have emerged as potential targets for CD8+ T-cell recognition. In addition to identifying a targetable antigen, it is crucial to understand the tumor immune microenvironment. The level of immune infiltration and mechanisms of immune suppression within the tumor play important roles in the outcome of immunotherapy. The goal of this study is to identify targetable immunogenic antigens for T-cell based immunotherapy and to characterize the tumor immune microenvironment in human dedifferentiated liposarcoma (DDLS) by Nanostring and IHC. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens we used the nCounter NanoString platform to generate a gene expression profile for hundreds of genes from RNA obtained from 29 DDLS and 10 control fat FFPE samples. To classify inflammatory status of DDLS tumors, we performed hierarchical clustering based on expression levels of selected tumor inflammatory signature genes (CCL5, CD27, CD274, CD276, CD8A, CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-E, IDO1, LAG3, PDCDILG2, PSMB10, STAT1, TIGIT). To confirm protein expression and distribution of identified antigens, we performed immunohistochemistry on human tissue micro-arrays encompassing DDLPS tumor tissues and matched normal control tissue from 63 patients. IHC for the cancer testis antigens PBK, SPA17, MAGE-A3, NY-ESO-1 and SSX2 was performed, and the staining results were scored by two authors based on maximal staining intensity on a scale of zero to three (absent=0, weak=1, moderate=2, or strong=3) and the percentage of tumor cells that stained. Hierarchical clustering of DDLS tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumor and 14 non-inflamed tumors, demonstrating tumor heterogeneity within the DDLS sarcoma subtype. All antigens were found to be expressed in DDLS at an mRNA level. SPA17 was expressed at the highest levels in DDLS, however, this antigen was expressed at high levels in normal fat. Notably, antigens PBK and TTK had the largest fold change increase in expression in DDLS compared to normal fat controls. Immunohistochemical analysis of selected antigens revealed that PBK was found to be expressed in 96% (52/54) of DDLS samples at high levels. Other antigens were absent or expressed at low levels in DDLS; MAGEA3 in 15.87% (10/63) NY-ESO-1 in 6.35% (4/62) and SSX2 in 12.7% (8/63) and SPA17 in 5.5% (3/54). This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS. To date, these results show promising expression of PBK antigen in DDLS, which may be used as a target in the future development of an immunotherapy for sarcoma


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 59 - 59
1 Jul 2020
Chim Y Cheung W Chow SK
Full Access

It has been previously shown that Low-Magnitude High-Frequency Vibration (LMHFV) is able to enhance ovariectomy-induced osteoporotic fracture healing in rats. Fracture healing begins with the inflammatory stage, and all subsequent stages are regulated by the infiltration of immune cells such as macrophages and the release of inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10). Therefore, the aim of this study was to investigate the effect of LMFHV treatment on the inflammatory response in osteoporotic fracture healing. In this study, ovariectomy-induced osteoporotic and sham-operated closed-femoral fracture SD-rats were randomized into three groups: sham control (SHAM), ovariectomized control (OVX-C) or ovariectomized vibration (OVX-V) (n=36, n=6 per group per time point). LMHFV (35Hz, 0.3g) was given 20 min/day and 5 days/week to OVX-V group. SHAM operation and ovariectomy were performed at 6-month and closed femoral fracture was performed at 9-month. Callus morphometry was determined by callus width from weekly radiography. Local expressions of inducible nitric oxide synthase (iNOS) (macrophage M1 marker), CD206 (macrophage M2 marker), TNF-α, IL-6 and IL-10 were detected by immunohistochemistry and quantified by colour threshold in ImageJ, assessed at weeks 1 and 2 post-fracture. Significant difference between groups was considered at p≤0.05 by one-way ANOVA. Callus formation was higher in OVX-V than that of OVX-C as shown by callus width at weeks 1 and 2 (p=0.054 and 0.028, respectively). Immunohistochemistry results showed that CD206 positive signal and the M2/M1 ratio which indicates the progression of macrophage polarization were significantly higher in OVX-V rats (p=0.053 and 0.049, respectively) when compared to OVX-C at week 1. Area fraction of TNF-α positive signal was significantly higher in SHAM and OVX-V rats at week 1 (p=0.01 and 0.033, respectively). IL-6 signal was also significantly higher in SHAM and OVX-V groups at week 1 (p=0.004 and 0.029, respectively). IL-10 expression was significantly lower in SHAM and OVX-V groups at week 1 (p=0.013 and 0.05, respectively). Here we have shown that LMHFV treatment promoted the shift from pro-inflammatory stage towards anti-inflammatory stage earlier. It has been reported that the polarization of pro-inflammatory macrophages M1 to anti-inflammatory macrophages M2 was indicative of the endochondral ossification process in the long bone fracture model. Besides, we found that LMHFV treatment enhanced pro-inflammatory markers of TNF-α and IL-6 and suppressed anti-inflammatory marker of IL-10 at week 1, showing that inflammatory response was enhanced at week 1 post-fracture. These inflammatory cytokines involved in fracture healing were shown to coordinate different fracture healing processes such as mesenchymal stem cell recruitment and angiogenesis. Our previous study has demonstrated that ovariectomized rats exhibit lower levels of inflammatory response after fracture creation. Therefore, we report that LMHFV treatment can modulate macrophage polarization from M1 to M2 at an earlier time-point and partly restore the impaired inflammatory response in OVX bones at the early stage of fracture healing that may lead to accelerated healing of osteoporotic fracture as shown by promoted callus formation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 47 - 47
1 Dec 2021
Lüthje FL Skovgaard K Jensen HE Heegaard P Gottlieb H Kirketerp-M⊘ller K Blirup SA Jensen LK
Full Access

Aim. The liver is the major source of acute phase proteins (APPs) and serum concentrations of several APPs are widely used as markers of inflammation and infection. The aim of the present study was to explore if a local extra hepatic osseous acute phase response occurs during osteomyelitis. Method. The systemic (liver tissue and serum) and local (bone tissue) expression of several APPs during osteomyelitis was investigated with qPCR and ELISA in a porcine model of implant associated osteomyelitis (IAO) at 5, 10 and 15 days after inoculation with S. aureus or saline, respectively. Additionally, samples were also collected from normal heathy pigs and pigs with spontaneous, chronic, haematogenous osteomyelitis. Afterwards, immunohistochemistry towards different upregulated APPs was performed on the porcine osteomyelitis lesions and on bone biopsies from human patients with chronic osteomyelitis. Results. All infected porcine bone lesions (apart from Day 5 in the IAO model) were made up by necrosis, pus, and various degree of fibrotic encapsulation. A local, highly significant upregulation of Serum Amyloid A (SAA, up to 4000-fold upregulation), Complement component C3 (C3), and Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4) were present in infected pigs compared to sterile controls. For the experimental IAO animals, the upregulation of C3 and ITIH4 increased over time, i.e., the highest expression was seen on day 15 after bacterial inoculation. In the liver, only C-reactive protein (CRP) and ITIH4 (not SAA or C3) were slightly upregulated in infected pigs. Serum concentrations of CRP, SAA and haptoglobin were only upregulated at day 5 in IAO infected animals. Immunohistochemically, comparable numbers of APP positive cells (leucocytes and bone cells) were found in human and porcine bone samples with chronic osteomyelitis. Conclusions. This is to our knowledge the first description of local APP up-regulation during chronic bone infection. Only small changes in the expression of APPs were found in the liver and serum samples. Thus, the presence of an osseous upregulation of APPs appears to be part of a predominantly local response that will be difficult to measure systemically. The importance of a local immune response in bone infections seems logical as the blood supply is severely impaired during osteomyelitis. There is a real need for supportive diagnostic bone infection criteria which should be based on a comprehensive understanding of the local inflammatory response. As seen from the present study, staining for SAA or C3 could potentially improve the diagnostic performance of histopathology


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 42 - 42
1 Mar 2021
Moldovan F Parent S Barchi S Hassan A Patten K
Full Access

The etiology of adolescent idiopathic scoliosis (AIS) is largely unknown, but clinical observations revealed the role of hereditary and rapid growth in the development of this condition. More recently, several genes were suspected to cause or contribute to AIS. Our group identified gene variants of POC5 centriolar protein in a French and French-Canadian families with multiple members affected with AIS. We sought to expand on this study and to investigate for the role of POC5 gene and mutated protein. In this work, the potential pathogenic effect of mutated POC5 was investigated in vitro (human osteoblats cell culture) and in vivo in a zebrafish animal model. To investigate the role of POC5 in AIS, we investigated subcellular localization of POC5 with respect to cilia in cells overexpressing wt or POC5 variants (C1286T, A429V) and in human osteoblasts from scoliotic patients carrying these POC5 variants and normal control cells (in vitro study). We also created a loss-of-function model in zebrafish (in vivo study). The role of POC5 was investigated by: 1) mass spectroscopy analysis and co-immunoprecipitation to identify differences in binding partners between the wild-type (wt POC5 and mut POC5 protein; 2) immunolocalization of POC5 wt and mut proteins at the cellular level; 3) histology and immunohistochemistry performed on tissues from wt (control) and scoliotic (poc5 mut) zebrafish. Our work identified several interacting partners with POC5, and documented functional connections with respect to cilia and centrosome dysfunction. A number of ciliary proteins were identified to be interacting with wt POC5 but not mut POC5. At the cellular level, localization and co-localisation of wt POC5 and mut POC5 protein with alpha acetylated tubulin (cilia marker), confirmed the consequence of the mutation on subcellular location with respect to cilium structure, length and staining intensity of cilia. In vivo, several defects in the retina were identified in mut poc5 zebrafish compared wt zebrafish. Finally, using different markers for retinal layers and acetylated tubulin, the defects were localized in ganglion cell layer and cones of the retina. Our findings confirm the involvement of POC5 in scoliosis. A role of POC5 with respect to the primary cilia was attributed. These findings open new avenues for the understanding the primary causes of AIS at the molecular and physiological levels


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 3 - 3
1 Mar 2021
Ge S Hadidi L Comeau-Gauthier M Ramirez-GarciaLuna J Merle G Harvey E
Full Access

Fracture non-union can be as high as 20% in certain clinical scenarios and has a high associated socioeconomic burden. Boron has been shown to regulate the Wnt/β-catenin pathway in other bodily processes. However, this pathway is also critical for bone healing. Here we aim to demonstrate that the local delivery of boric acid can accelerate bone healing, as well as to elucidate how boric acid, via the regulationtheWnt/β-catenin pathway, impacts theosteogenic response of bone-derived osteoclasts and osteoblasts during each phase of bone repair. Bilateral femoral cortical defects were created in 32 skeletally mature C57 mice. On the experimental side, boric acid (8mg/kg concentration) was injected locally at the defect site whereas on the control side, saline was used. Mice were euthanized at 7, 14, and 28 days. MicroCT was used to quantify bone regeneration at the defect. Histological staining for ALP and TRAP was used to quantify osteoblast and osteoclast activity respectively. Immunohistochemical antibodies, β-catenin and CD34 were used to quantify active β-catenin levels and angiogenesis respectively. Sclerostin and GSK3β were also quantified and are both inhibitors of the wnt signaling pathway via degradation and inactivation of β-catenin. The boron group exhibited higher bone volume and trabecular thickness at the defect site by 28 days on microCT. ALP activity was significantly higher in boron group at 7 days whereas boron had no effect on TRAP activity. Additionally, CD34 staining revealed increased angiogenesis at 14 days in boron treated groups. β-catenin activity on immunohistochemistry was significantly higher in the boron group at 7 days, GSK3β was significantly higher in the boron group at 14 days and Sclerostin was significantly higher in the boron group at 28 days. Boron appears to increase osteoblast activity at the earlier phases of healing. The corresponding early increase in β-catenin along with ALP likely supports that boron increases osteoblast activity via the wnt/β-catenin pathway. Increased angiogenesis at 14 days could be a separate mechanism increasing bone formation independent of wnt/β-catenin activation. Neither GSK3β or Sclerostin levels correlated with β-catenin activity therefore boron likely increases β-catenin through a mechanism independent of both GSK3β and Sclerostin. The addition of this inexpensive and widely available ion could potentially become a non-invasive, cost-effective treatment modality to augment fracture healing and decrease non-union rates in high risk patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 36 - 36
1 Jul 2020
Lian WS Wang F Hsieh CK
Full Access

Aberrant infrapatellar fat metabolism is a notable feature provoking inflammation and fibrosis in the progression of osteoarthritis (OA). Irisin, a secretory subunit of fibronectin type III domain containing 5 (FNDC5) regulate adipose morphogenesis, energy expenditure, skeletal muscle, and bone metabolism. This study aims to characterize the biological roles of Irisin signaling in an infrapatellar fat formation and OA development. Injured articular specimens were harvested from 19 patients with end-stage knee OA and 11 patients with the femoral neck fracture. Knee joints in mice that overexpressed Irisin were subjected to intra-articular injection of collagenase to provoke OA. Expressions of Irisin, adipokines, and MMPs probed with RT-quantitative PCR. Infrapatellar adiposity, articular cartilage damage, and synovial integrity verified with histomorphometry and immunohistochemistry. Infrapatellar adipose and synovial tissues instead of articular cartilage exhibited Irisin immunostaining. Human OA specimens showed 40% decline in Irisin expression than the non-OA group. In vitro, the gain of Irisin function enabled synovial fibroblasts but not chondrocytes to display minor responses to the IL-1β provocation of MMP3 and MMP9 expression. Of note, Irisin signaling reduced adipogenic gene expression and adipocyte formation of mesenchymal progenitor cells. In collagenase-mediated OA knee pathogenesis, forced FNDC5 expression in articular compromised the collagenase-induced infrapatellar adipose hypertrophy, synovial hypercellularity, and membrane hyperplasia. These adipose-regulatory actions warded off the affected knees from cartilage destruction and gait aberrance. Likewise, intra-articular injection of Irisin recombinant protein mitigated the development of infrapatellar adiposity and synovitis slowing down the progression of cartilage erosion and walking profile irregularity. Affected joints and adipocytes responded to the Irisin recombinant protein treatment by reducing the expressions of cartilage-deleterious adipokines IL-6, leptin, and adiponectin through regulating PPAR&gamma, function. Irisin dysfunction is relevant to the existence of end-stage knee OA. Irisin signaling protects from excessive adipogenesis of mesenchymal precursor cells and diminished inflammation and cartilage catabolism actions aggravated by adipocytes and synovial cells. This study sheds emerging new light on the Irisin signaling stabilization of infrapatellar adipose homeostasis and the perspective of the therapeutic potential of Irisin recombinant protein for deescalating knee OA development


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 46 - 46
1 Aug 2020
Charbonnier B Baradaran A Harvey E Gilardino M Makhoul N Barralet J
Full Access

The treatment of critical-sized bone defects still remains today a challenge, especially when the surrounding soft, vascularized and innervated tissues have been damaged - a lack of revascularization within the injured site leading to physiological disorders, from delayed healing to osteonecrosis. The axial insertion of a vascular bundle (e.g. arterio-venous loop, AVL) within a synthetic bone filler to initiate and promote its revascularization has been foreseen as a promising alternative to the current strategies (e.g., vascularized free flaps) for the regeneration of large bone defects. In a previous work, we showed that the insertion of a vein in a 3D-printed monetite scaffold induced its higher revascularization than AVL, thus a possible simplification of the surgical procedures (no microsurgery required). Going further, we investigate in this study whether or not the presence of a vein could stimulate the formation of mineralized tissue insides a synthetic scaffold filled with bone marrow and implanted in ectopic site. Monetite scaffolds were produced by additive manufacturing according to a reactive 3D-printing technique co-developed by the authors then thoroughly characterized. Animal study was performed on 14 male Wistar rats. After anesthesia and analgesia, a skin medial incision in rat thigh allowed the site on implantation to be exposed. Bone marrow was collected on the opposite femur through a minimally invasive procedure and the implant was soaked with it. For the control group (N=7), the implant was inserted in the incision and the wound was closed whereas the femoral bundle was dissected and the vein inserted in the implant for the experimental group (N=7). After 8 weeks animals were sacrificed, the implant collected and fixed in a 4% paraformaldehyde solution. Explants were characterized by µCT then embedded in poly-methyl methacrylate prior SEM, histology and immunohistochemistry. Images were analyzed with CT-Analyzer (Bruker) and ImageJ (NIH) and statistical analyses were carried out using SPSS (IBM). Implants were successfully 3D-printed with a +150 µm deviation from the initial CAD. As expected, implants were composed of 63%wt monetite and 37%wt unreacted TCP, with a total porosity of 44%. Data suggested that scaffold biodegradation was significantly higher when perfused by a vein. Moreover, the latter allowed for the development of a dense vascular network within the implant, which is far more advanced than for the control group. Finally, although mineralized tissues were observed both inside and outside the implant for both groups, bone formation appeared to be much more important in the experimental one. The ectopic formation of a new mineralized tissue within a monetite implant soaked with bone marrow seems to be highly stimulated by the simple presence of a vein alone. Although AVL have been studied extensively, little is known about the couple angiogenesis/osteogenesis which appears to be a key factor for the regeneration of critical-sized bone defects. Even less is known about the mechanisms that lead to the formation of a new bone tissue, induced by the presence of a vein only. With this in mind, this study could be considered as a proof of concept for further investigations


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 73 - 73
1 Jul 2020
Albiero A Piombo V Diamanti L Birch M McCaskie A
Full Access

Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the synovium. They are relevant to cartilage homeostasis and, like MSCs, are increasingly identified as candidates for joint repair and regenerative cell therapy. Both chondrocytes and MSCs can be regulated by the Wnt and TGFβ pathways. Dishevelled Binding Antagonist of Beta-Catenin (Dact) family of proteins is an important modulator of Wnt and TGFβ pathways. These pathways are key to MSC and chondrocyte function but, to our knowledge, the role of DACT protein has not been studied in these cells. DACT1 and DACT2 were localised by immunohistochemistry in the developing joints of mouse embryos and in adult human cartilage obtained from knee replacement. RNAi of DACT1 and DACT2 was performed on isolated chondrocytes and MSCs from human bone marrow. Knockdown efficiency and cell morphology was confirmed by qPCR and immunofluorescence. To understand which pathways are affected by DACT1, we performed next-generation sequencing gene expression analysis (RNAseq) on cells where DACT1 had been reduced by RNAi. Top statistically significant (p < 0 .05) 200 up and downregulated genes were analysed with Ingenuity® Pathway Analysis software. We observed DACT1 and DACT2 in chondrocytes throughout the osteoarthritic tissue, including in chondrocytes forming cell clusters. On the non-weight bearing and visually undamaged cartilage, DACT1 and DACT2 was localised to the articular surface. Furthermore, in mouse embryos (E.15.5), we observed DACT2 at the interzones, sites of developing synovial joints, suggesting that DACT2 has a role in cartilage progenitor cells. We subsequently analysed the expression of DACT1 and DACT2 in MSCs and found that both are expressed in synovial and bone marrow-derived MSCs. We then performed an RNAi knockdown experiment. DACT1 knockdown in both chondrocyte and MSCs caused the cells to undergo apoptosis within 24 hours. The RNA-seq study of DACT1 silenced bone marrow-derived MSCs, from 4 different human subjects, showed that loss of DACT1 has an effect on the expression of genes involved in both TGFβ and Wnt pathways and putative link to relevant cell regulatory pathways. In summary, we describe for the first time, the presence and biological relevance of DACT1 and DACT2 in chondrocytes and MSCs. Loss of DACT1 induced cell death in both chondrocytes and MSCs, with RNA-seq analysis revealing a direct impact on transcript levels of genes involved in the Wnt and TFGβ signalling, key regulatory pathways in skeletal development and repair


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 147 - 147
1 Jul 2020
Godbout C Nauth A Schemitsch EH Fung B Lad H Watts E Desjardins S Cheung KLT
Full Access

The Masquelet or induced membrane technique (IMT) is a two-stage surgical procedure used for the treatment of segmental bone defects. In this technique, the defect is first filled with a polymethyl methacrylate (PMMA) spacer, which triggers the formation of a membrane that will encapsulate the defect. During the second surgery, the spacer is carefully removed and replaced by autologous bone graft while preserving the membrane. This membrane is vascularized, contains growth factors, and provides mechanical stability to the graft, all of which are assumed to prevent graft resorption and promote bone healing. The technique is gaining in popularity and several variations have been introduced in the clinical practice. For instance, orthopaedic surgeons now often include antibiotics in the spacer to treat or prevent infection. However, the consequences of this approach on the properties of the induce membrane are not fully understood. Accordingly, in a small animal model, this study aimed to determine the impact on the induced membrane of impregnating spacers with antibiotics frequently used in the IMT. We surgically created a five-mm segmental defect in the right femur of 25 adult male Sprague Dawley rats. The bone was stabilized with a plate and screws before filling the defect with a PMMA spacer. Animals were divided into five equal groups according to the type and dose of antibiotics impregnated in the spacer: A) no antibiotic (control), B) low-dose tobramycin (1.2 g/40 g of PMMA), C) low-dose vancomycin (1 g/40 g of PMMA), D) high-dose tobramycin (3.6 g/40 g of PMMA), E) high-dose vancomycin (3 g/40 g of PMMA). The animals were euthanized three weeks after surgery and the induced membranes were collected and divided for analysis. We assessed the expression of selected genes (Alpl, Ctgf, Runx2, Tgfb1, Vegfa) within the membrane by quantitative real-time PCR. Moreover, frozen sections of the specimens were used to quantify vascularity by immunohistochemistry (CD31 antigen), proliferative cells by immunofluorescence (Ki-67 antigen), and membrane thickness. Microscopic images of the entire tissue sections were taken and analyzed using FIJI software. Finally, we measured the concentration of vascular endothelial growth factor (VEGF) in the membranes by ELISA. No significant difference was found among the groups regarding the expression of genes related to osteogenesis (Alpl, Runx2), angiogenesis (Vegfa), or synthesis of extracellular matrix (Ctgf, Tgfb1) (n = four or five). Similarly, the density of proliferative cells and blood vessels within the membrane, as well as the membrane thickness, did not vary substantially between the control, low-dose, or high-dose antibiotic groups (n = four or five). The concentration of VEGF was also not significantly influenced by the treatment received (n = four or five). The addition of tobramycin or vancomycin to the spacer, at the defined low and high doses, does not significantly alter the bioactive characteristics of the membrane. These results suggest that orthopaedic surgeons could use antibiotic-impregnated spacers for the IMT without compromising the induced membrane and potentially bone healing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 56 - 56
1 Jul 2020
Epure LM Grant M Salem O Huk OL Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the proteoglycan content of the cartilage explants as determined by the DMMB assay. The presence of aggrecan and Col II also decreased as a function of calcium, in both the human OA and bovine cartilage explants. When normal and OA chondrocytes were cultured in medium supplemented with increasing concentrations of calcium (0.5–5 mM Ca2+), aggrecan and Col II expression decreased dose-dependently. Surprisingly, increasing Ca2+ did not induce the release of MMP-3, and −13, or ADAMTS-4 and-5 in conditioned media from OA and normal chondrocytes. Interestingly, inhibition of the extracellular calcium-sensing receptor CaSR) reversed the effects of calcium on matrix protein synthesis. We provide evidence that Ca2+ may play a direct role in cartilage degradation by regulating the expression of aggrecan and Col II through activation of CaSR


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 128 - 128
1 Jul 2020
Teissier V Hamadouche M Bensidhoum M Petite H
Full Access

Polyethylene wear-debris induced inflammatory osteolysis is known as the main cause of aseptic loosening and long term revision total hip arthroplasty. Although recent reports suggest that antioxidant impregnated ultra-high molecular weight polyethylene (UHMWPE) wear-debris have reduce the osteolytic potential in vivo when compared to virgin UHMWPE, little is known about if and/or how PE rate of oxidation affects osteolysis in vivo. We hypothesized that oxidized UHMWPE particles would cause more inflammatory osteolysis in a murine calvarial bone model when compared to virgin UHMWPE. Male C57BL/6 eight weeks old received equal amount of particulate debris overlaying the calvarium of (n=12/group): sham treatment (no particles), 2mg (6,75×107 particles/mg) of endotoxin-free UHMWPE particles (PE) or of endotoxin-free highly oxidized-UHMWPE (OX) particles. In vivo osteolysis was assessed using high resolution micro-CT and inflammation with L-012 probe dependent luminescence. At day 10, calvarial bone was examined using high resolution micro-CT, histomorphometric, immunohistochemistry analyses and qRT-PCR to assess OPG, RANK, RANK-L, IL-10, IL-4, IL-1b and TRAP genes expression using the protocol defined by individual TaqManTM Gene Expression Assays Protocol (Applied Biosystems). In vivo inflammation was significantly higher in the OX (1.60E+06 ± 8.28E+05 photons/s/cm2) versus PE (8.48E+05 ± 3.67E+05) group (p=0.01). Although there was a statistically significant difference between sham (−0.27% ± 2.55%) and implanted (PE: −9.7% ± 1.97%, and OX: − 8.38% ± 1.98%) groups with regards to bone resorption (p=0.02), this difference was not significant between OX and PE (p = 0.14). There was no significant difference between groups regarding PCR analyses for OPG, RANK, RANK-L, IL-10, IL-4, IL-1b and TRAP (p = 0.6, 0.7, 0.1, 0.6, 0.3, 0.4, 0.7 respectively). Bone volume density was significantly decreased in PE (13.3%±1.2%) and OX (12.2%±1.2%) groups when compared to sham (15%±0.9%) (p < 0 .05). Histomorphometric analyses showed a significantly decreased Bone Thickness/Tissue Thickness ratio in the implanted group (0.41±0.01 mm and 0.43±0.01 mm) compared to sham group (0.69± 0.01) (p < 0 .001). However, there were no significant difference between OX and PE (p = 0.2). Our findings suggest that oxidized UHMWPE particles display increased inflammatory potential. Results were not significant regarding in vivo or ex vivo osteolysis. As antioxidant-diffused UHMWPE induce less inflammation activity in vivo, the mechanism by which they cause reduced osteolysis requires further investigation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 101 - 101
1 Jul 2020
Comeau-Gauthier M Tarchala M Ramirez-GarciaLuna J Harvey E Merle G
Full Access

Bone regeneration includes a well-orchestrated series of biological events of bone induction and conduction. Among them, the Wnt/β-catenin signaling pathway is critical for bone regeneration. Being involved in several developmental processes, Wnt/β-catenin signaling must be safely targeted. There are currently only few specific therapeutic agents which are FDA-approved and already entered clinical trials. A published work has shown that Tideglusib, a selective and irreversible small molecule non-ATP-competitive glycogen synthase kinase 3-β(GSK-3β) inhibitor currently in trial for Alzheimer's patients, can promote tooth growth and repair cavities. [1]Despite some differences, they are some similarities between bone and tooth formation and we hypothesise that this new drug could represent a new avenue to stimulate bone healing. In this work, we locally delivered Tideglusib (GSK3β inhibitor) in the repair of femoral cortical window defects and investigated bone regeneration. A biodegradable FDA-approved collagen sponge was soaked in GSK-3βinhibitor solution or vehicle only (DMSO) and was implanted in 1 × 2 mm unicortical defects created in femora of 35 adult wild-type male mice. Bone defect repair on control and experimental (GSK-3βinhibitor) groups was assessed after 1 week (n=22), 2 weeks (n=24) and 4 weeks (n=24) with microCT and histological analysis foralkaline phosphatase (ALP, osteoblast activity), tartrate resistant acid phosphatase (TRAP, osteoclasts), and immunohistochemistry to confirm the activation of the Wnt/β-catenin pathway. Our results showed that Tideglusib significantly enhanced cortical bone bridging (20.6 ±2.3) when compared with the control (12.7 ±1.9, p=0.001). Activity of GSK-3β was effectively downregulated at day 7 and 14 resulting in a higher accumulation of active β-catenin at day 14 in experimental group (2.5±0.3) compared to the control (1.1±0.2, p=0.03). Furthermore, the onset of ALP activity appears earlier in the experimental group (day 14, 1.79±0.28), a level of activity never reached at any end-point by the control defects. At 4 weeks treatment, we observed a significant drop in ALP in the experimental group (0.47±0.05) compared to the control (1.01±0.19, p=0.02) and a decrease in osteoclast (experimental=1.32±0.36, control=2.23±0.67, p=0.04). Local downregulation of GSK-3β by tideglusib during bone defect repair resulted in significant increase in amount of new bone formation. The early upregulation of osteoblast activity is one explanation of bone healing augmentation. This is likely the effect of upregulation of β-catenin following pharmaceutical inhibition of GSK-3β since β-catenin activation is known to positively regulate osteoblasts, once committed to the osteoblast lineage. As a GSK-3β inhibitor, Tideglusib demonstrates a different mechanism of action compared with other GSK-3β antagonists as treatment was started immediately upon injury and did not interfere with precursor cells recruitment and commitment. This indicates that tideglusib could be used at the fracture site during the initial intraoperative internal fixation without the need for further surgery. This safe and FDA-approved drug could be used in prevention of non-union in patients presenting with high risk for fracture-healing complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 41 - 41
1 Jul 2020
Monument M Singla A Affan A Jirik F Hildebrand K Kendal J
Full Access

Soft tissue sarcomas (STS) have not demonstrated favourable clinical responses to emerging immunotherapies such as checkpoint inhibitors. Studies in carcinomas and melanoma have demonstrated that tumours lacking T-cell infiltrates are associated with poor responses to immunotherapies. It is postulated that STS lack tumour asscoiated lymphocytes which renders these tumours insensitive to checkpoint inhibitors. Our objective was to develop a novel syngeneic mouse model of STS and characterize the immune phenotype of these tumours. Additionally, we sought to evaluate the therapeutic responses of these sarcomas to checkpoint inhibitors and a Type I interferon agonist. K-ras mutagenesis and p53 deletion was induced using a Lenti-Cre-recombinase injection into the hindlimb of 3 week old C57BL/6 mice. Tumours were harvested and characterized using standard histopathology techniques and whole trascriptome sequencing (RNAseq). Full body necrospy and histopathology was performed to identify metastases. Flow cytometry and immunohistochemistry was used to evaluate tumour immune phenotypes. Tumours were implanted into syngeneic C57BL/6 mice and the therapeutic responses to anti-CTLA4, anti-PD1 and DMXAA (Type I interferon agonist) were performed. Tumour responses were evaluated using bioluminescent imaging and caliper measurements. Soft tissue sarcomas developed in mice within 2–3 months of Lenti-Cre injection with 90% penetrance. Histologic analyses of tumours was consistent with a high-grade myogenic sarcoma characterized by smooth muscle actin, Desmin and Myogenin D positive immunostaining. Using crossplatform normalization protocols, geneexpression signatures of the mouse tumours most closely correlated with human undifferentiated pleomorphic sarcoma (UPS). Collectively, gene expression signatures of this murine sarcoma correlated with all muscle-derived human sarcomas (ERMS, ARMS, Synovial sarcoma, UPS). No lung or other visceral metastases were observed in all mice who developed spontaneous tumours. Immune phenotyping demonstrated a paucity of tumour-infiltrating lymphocytes (TILs, (TAMs). 50% of identified TILs in these murine sarcomas expressed PD-1, yet tumours were not responsive to anti-PD1 therapy or anti-CTLA4 therapy. A single intra tumoural (i.t.) injection of the Type I interferon agonist, DMXAA resulted in 80–90% tumour necrosis 72 hrs post-injection, decreased tumour viability up to 2 weeks post-injection and a marked infiltration of CD8+ T-cells and anitgen presenting dendritic cells and macrophages. Additional longitudinal experiments demonstrate a sustained and progressive anti-tumour effect in 83% (5/6) mice up to 6weeks following a single i.t. injection of DMXAA. All control treated mice (6/6) reached humane endpoint within 14 days. At 3 months post-DMXAA treatment, 4/6 mice were free of disease. We re-injected UPS tumours into these mice and tumours did not grow, suggesting abscopal effects after DMXAA treatment of primary tumours. We have characterized a new orthotopic and syngeneic mouse model of a myogenic soft tissue sarcoma. Like most human STS sub-types, these tumours have an immune inert tumour microenvironment and are not sensitive to checkpoint inhibitors. This model, syngeneic to C56BL/6 mice will enable future opportunities to investigate how various branches of the immune system can be targetted or manipulated to unearth new immunotherapeutic strategies for sarcoma. Using this model we have demonstrated that a single, intra-tumoural injection of a Type I interferon agonist can result in anti-tumour effects, recruit cytotoxic lymphocytes and antigen presenting cells with into the the tumour microenvironment. Abscopal tumour rejection after DMXAA treatement suggest adaptive T-cell responses against UPS are active in this model. Future work is needed to determine if upregulation of Type I inferferon pathways can be used as a therapeutic strategy for sarcoma or as a sensitization strategy for checkpoint inhibitors