Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides,
Lumbar diseases have become a major problem affecting human health worldwide. Conservative treatment of lumbar diseases is difficult to achieve ideal results, and surgical treatment of trauma, complications, it is imperative to develop a new treatment method. This study aims to explore the regulatory mechanism of cartilage endplate ossification caused by abnormal stress, and design intervention targets for this mechanism, so as to provide theoretical reference for the prevention and treatment of lumbar degeneration. In vivo, we constructed spinal instability model in mice. In vitro, we used a mechanical tensile machine to simulate the abnormal stress conditions of the endplate cartilage cells. Through the high-throughput sequencing, we found the enrichment of Hippo signaling pathway. As YAP is a key protein in the Hippo signaling pathway, we then created cartilaginous YAP elimination mice (Col2::YAPfl/fl). The lumbar spine model was constructed again in these mice for H&E, SOFG and
Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on osteogenesis, and our study aimed to demonstrate its effect on osteoclast activation. In vivo, we used 11β-HSD1 knock-off (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, In vivo, We used 11β-HSD1 knockoff (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, bone marrow-derived macrophages (BMM) and bone marrow mesenchymal stem cell (BMSC) of KO and C57BL6/J mice were extracted to test their osteogenic and osteoclastic abilities. We then created osteoclastic 11β-HSD1 elimination mice (Ctsk::11β-HSD1fl/fl) and treated them with OVX. Micro-CT analysis, H&E,
Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers. Using Western blot we validated the specificity of selected antibodies in equine tissue before performing immunohistochemistry to establish the location of the respective proteins in the SDFT. We subsequently used double labelling
Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA. Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes.
Aseptic inflammation is the main factor causing aseptic loosening of artificial joints. Studies have shown that inflammatory cells can activate STING (stimulator of interferon genes, STING) after being stressed. This study aims to explore the specific mechanism of STING in aseptic loosening of artificial joints, and provide new strategies for disease prevention. Titanium particles with a diameter of 1.2-10 μm were prepared to stimulate macrophages (RAW 264.7) to simulate the periprosthetic microenvironment. A lentiviral vector targeting the STING gene was designed and transfected into macrophages to construct a cell line targeting STING knockdown. The expression and secretion levels of TNF-α were detected by qPCR and ELISA, the activation levels of inflammatory pathways (NF-κB, IRF3, etc.) were detected by western blot, and the nucleus translocation of P65 and IRF3 was observed by cellular
Poor tendon repair is an unsolved issue in clinical practice, due to complex tendon structure. Tendon stem/progenitor cells (TSPCs) play key roles in homeostasis, regeneration, and inflammation regulation in acute tendon injuries, and rely on TGF-β signaling for recruitment into degenerative tendons. In this study, we aimed to develop an in vitro model for tenogenesis adopting a dynamic culture of a fibrin 3D scaffold, bioengineered with human TSPCs collected from both healthy and tendinopathic surgery explants (Review Board prot./SCCE n.151, 29 October 2020). 3D culture was maintained for 21 days under perfusion provided by a custom-made bioreactor, in a medium supplemented with hTGF-β1 at 20 ng/mL. The data collected suggested that the 3D in vitro model well supported survival of both pathological and healthy cells, and that hTGF-β signaling, coupled to a dynamic environment, promoted differentiation events. However, pathological hTSPCs showed a different expression pattern of tendon-related genes throughout the culture and an impaired balance of pro-inflammatory and anti-inflammatory cytokines, compared to healthy hTSPCs, as indicated by qRT-PCT and
Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the development in materials science and fabrication techniques. In particular, combining the specificity of 3D printing with smart materials has introduced a new concept called the 4D printing. Inspired by the unique properties of smart/responsive materials, we designed a bioink made of gelatin, a polymer with well-known cell compatibility, to be 3D printed on a magnetically responsive substrate. Gelatin was made photocrosslinkable by the methacrylate reaction (GELMA), and its viscosity was finetuned by blending with alginate which was later removed by alginate lyase treatment, so that the printability of the bioink as well as the cell viability can be finetuned. C2C12 mouse myoblasts-laden bioink was then 3D printed on a magnetic substrate for 4D shape-shifting. The magnetic substrate was produced using silicon rubber (EcoFlex) and carbonyl iron powders. After 3D printing, the bioink was crosslinked on the substrate, and the substrate was rolled with the help of a permanent magnet. Unrolled (Open) samples were used as the control group. The stiffness of the bioink matrix was found to be in the range of 13–45 kPa, which is the appropriate value for the adhesion of C2C12 cells. In the cell viability analysis, it was observed that the cells survived and could proliferate within the 7-day duration of the experiment. As a result of the
Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via
As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis. Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and
While high-performance ceramics like alumina and zirconia exhibit excellent wear resistance, they provide poor osseointegration capacity. As osseointegration is crucial for non-cemented joint prostheses, new techniques have been successfully developed for biofunctionalizing high-performance ceramic surfaces. Stable cell adhesion can be achieved by covalently bound specific peptides. In this study we investigate the effect of sterilization processes on organo-chemically functionalized surfaces. To enhance the performance of alumina-toughened zirconia ceramics (ATZ), a 3-aminopropyldiisopropylethoxysilane (APDS) monolayer was applied and coupled with cyclo-RGD peptides (cRGD) by using bifunctional crosslinker bis(sulfosuccinimidyl)suberat (BS³). The samples were sterilized using e-beam or gamma-sterilization at 25 kGy, either before or after biofunctionalization with cRGD. Functionalization stability was investigated by contact angle measurements. The functionality of cRGD after sterilization was demonstrated using proliferation tests and cytotoxicity assays.
Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D environment is necessary to reflect on the complex mix of these adherend and non-adherend cells in a physiologically relevant context. Therefore, the main aim of this approach was to establish conditions for a stable 3D BM-MNC culture to assess cellular responses on fracture healing strategies. BM samples were obtained from residual material after surgery with positive ethical vote and informed consent of the patients. BM-MNCs were isolated by density gradient centrifugation, and cellular composition was determined by flow cytometry to obtain unbiased data sets on contained cell populations. Collagen from rat tail and human fibrin was used to facilitate a 3D culture environment for the BM-MNCs over a period of three days. Effects on cellular composition that could improve the regenerative potential of BM-MNCs within the BM autograft were assessed using flow cytometry. Cell-cell-interactions were visualized using confocal microscopy over a period of 24 hours. Cell localization and interaction partners were characterized using
Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs). ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using
Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and
To investigate temporal changes in synovial lymphatic system (SLS) drainage function after Anterior cruciate ligament (ACL) injury, a non-invasive ACL rupture model was used to induce the PTOA phenotype without altering the SLS structure. We have created a non-invasive ACL rupture model in the right knee (single overload impact) of 12- week-old C57bl/6 male mice to mimic the ACL rupture-induced PTOA development. 70 kDa-TxRedDextran were injected into the right knee of the mice at 0, 1, 2, and 4 wks post modeling (n=5/group), and the fluorescence signal distribution and intensity were measured by the IVIS system at 1 and 6 hrs post-injection. After 24 hrs, the drainage lymph nodes and whole knee joint were harvested and subjected to ex vivo IVIS imaging and
Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time control over the regeneration of damaged bones by Medication-Related Osteonecrosis of the Jaw using a minimal invasive approach based on the injection of the fast-degrading pro neuro and angiogenic ELR (Elastin-Like Recombinamers) based hydrogels. Method. Chemical crosslinking facilitated the creation of multi-bioactive scaffolds using ELRs with reactive groups. Cell-loaded multi-bioactive scaffolds, prepared and incubated, underwent evaluation for adhesion, proliferation, angiogenic, and neurogenic potential. In vitro assessments utilized
Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs). ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using
Introduction. Piezo1 is a mechanosensitive Ca. 2+. ion channel that has been shown to transduce hyper-physiologic mechanical loads in chondrocytes. In osteoarthritic cartilage, Piezo1 expression was shown to be upregulated by interleukin-1 alpha (IL-1α) and resulted in altered calcium dynamics and actin cytoskeleton rarefication. Together these studies highlight the importance of Piezo1 channels during joint injury. However, the mechanism by which Piezo1 regulates chondrocyte physiology and mechanotransduction during homeostasis is still largely unknown. In this study, we investigate the impact of Piezo1 activation on nuclear mechanics and chromatin methylation state. Methods. Porcine chondrocytes (n=3-5 pigs) were treated with Yoda1, a Piezo1-specific agonist, for either 2, 5, 15 or 180 minutes. To characterize chromatin state, we monitored the abundance of a chromatin methylation marker (H3K9Me3) using
TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis. PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by q-PCR and
Based on Ilizarov's law of tension-stress principle, distraction histogenesis technique has been widely applied in orthopaedic surgery for decades. Derived from this technique, cranial bone transport technique was mainly used for treating cranial deformities and calvarial defects. Recent studies reported that there are dense short vascular connections between skull marrow and meninges for immune cells trafficking, highlighting complex and tight association between skull and brain. Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia without effective therapy. Meningeal lymphatics have been recognized as an important mediator in neurological diseases. The augmentation of meningeal lymphatic drainage might be a promising therapeutic target for AD. Our proof-of-concept study has indicated that cranial bone transport can promote ischemic stroke recovery via modulating meningeal lymphatic drainage function, providing a rationale for treating AD using cranial bone maneuver (CBM). This study aims to investigate the effects of CBM on AD and to further explore the potential mechanisms. Transgenic 5xFAD mice model was used in this study. After osteotomy, a bone flap was used to perform CBM without damaging the dura. Open filed test, novel object recognition test and Barn's maze test were used to evaluate neurological functions of 5xFAD mice after CBM treatment. Congo red and