Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 86 - 86
1 Apr 2019
Saravanja D Roger G
Full Access

Many navigation (Image Guided Surgery or IGS) systems are keyed to safely and accurately placing implants into complex anatomy. In spine surgery such as disc arthroplasty and fusion surgery this can be extremely helpful. Likewise, in joint arthroplasty the accurate placement with respect to the operative plan is widely recognized to be of benefit to long term results.

However, where realignment of anatomy is desired following implant placement, such as in high tibial osteotomy, spinal fusion with correction of deformity, and spinal disc arthroplasty, navigation systems can tell you where you are, but not where you would like to be.

We have developed specific software modification technology, applicable to all current navigation systems that addresses this need for assistance in surgical correction of anatomy to a desired alignment without the requirement for further imaging or irradiation. The benefits of our software allow image free re-referencing of image guided surgery, accommodation of intra-operative changes in anatomy, and intra-operative accountability and adjustment to allow errors of image guidance to be identifiable and correctible, at any stage of image guided surgery.

This software allows accurate pre-operative planning, intra-operative verification and assessment of the operative plan, and actual outcomes of the surgery to be assessed as the surgery is performed. It allows the surgeon to subsequently verify if the operative planning has been adequately achieved, and if not can verify if continued surgery has then achieved the planning goals. This verification and image guidance does not require further imaging during surgery, relying upon the original data set and software enhancements.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 25 - 25
1 Aug 2013
Lugez E Pichora D Akl S Ellis R
Full Access

Recently, electromagnetic tracking for surgical procedures has gained popularity due to its small sensor size and the absence of line-of-sight restrictions. However, EM trackers are susceptible to measurement noise. Indeed, depending on the environment, measurement uncertainties may vary considerably. Therefore, it is important to characterise electromagnetic measurement systems when used in a fluoroscopy setting. The purpose of our study is to assess decoupled static electromagnetic measurement errors in position and orientation, without adding potential interference, in the presence of fluoroscopic imaging equipment.

Using an Aurora electromagnetic tracking system (Northern Digital, Waterloo, Canada), 5 degrees of freedom measurements were collected in a working space located midway between the source and the receiver of a flat-panel 3D fluoroscope (Innova 4100, GE Healthcare, Buc, France) emitting X-rays. In addition, to determine potential EM distortion from X-rays, electromagnetic measurement accuracies, as a function of position, were compared before, during, and after X-ray emissions. To decouple position and orientation errors, two scaffold devices were designed. Their centre was placed approximately at X = −50, Y = 0, and Z = −300 mm in the EM tracker's global coordinate system. First the positioning scaffold was used to assess the position and orientation measurement uncertainties as a function of position. Next, the orienting scaffold was used to assess the position and orientation measurement uncertainties as a function of orientation. Then, a least-squares method was employed to register the path position measurements to the known geometry of the scaffolds. As a result, the position accuracy was defined as the Euclidean distance between the registered and the ground truth positions. Finally, the orientation accuracy was defined as the difference between two direct angles: the angle between two measured consecutive paths, and the angle of the corresponding ground truth.

When translating the sensor using the positioning scaffold, the resulting position accuracy was characterised by a mean of 3.2 mm. Similarly, when rotating the sensor using the orienting scaffold, the resulting orientation accuracy was characterised by a mean of 1.7 deg. As for the “cross-displacement” errors, the orientation accuracy as a function of position had a mean of 1.8 deg. Likewise, the position as a function of orientation had a mean of 4.0 mm. Position and orientation accuracies – as a function of position, before, during, and after emission of X-rays – indicate that there was no significant interference by the presence of an X-ray beam on the EM measurements.

This work provides evidence that placing the EM system into X-ray beams does not affect EM measurement accuracies. Nevertheless, the fluoroscope itself significantly increases the EM measurement errors. Careful analysis of the EM measurement distribution errors suggests that associated uncertainties are predictable and preventable. In essence, EM tracking is promising for orthopedic procedures that may require the use of a fluoroscope.


The Bernese periacetabular osteotomy (PAO) described by Ganz, et al. is a commonly used surgical intervention in hip dysplasia. PAO is being performed more frequently and is a viable alternative to hip arthroplasty for younger and more physically active patients. The procedure is challenging because pelvic anatomy is prohibitive to visibility and open access and requires four X-ray guided blind cuts around the acetabulum to free it from the hemi-pelvis. The crucial step is the re-orientation of the freed acetabulum to correct the inadequate coverage of the femoral head by idealy rotating the freed acetabular fragment. Diagnosis and the decision for surgical intervention is currently based upon patient symptoms, use of two-dimensional (2D) radiographic measurements, and the intrinsic experience of the surgeon. With the advent of new technologies allowing three-dimensional reconstructions of hip anatomy, previous two-dimensional X-ray definitions have created much debate in standardizing numerical representations of hip dysplasia. Recent work done by groups such as Arminger et al. have combined and expanded two-dimensional measurements such as Center-Edge (CE) angle of Wiberg, Vertical-Center-Anterior margin (VCA) angle, Acetabular Anteversion (AcetAV) and applied them to three-dimensional CT rendering of hip anatomy. Further, variability in pelvic tilt is a confounding factor and has further impeded measurement translatability. Computer assisted surgery (CAS) and navigation also called image-guided surgery (IGS) has been used in clinical cases of PAO with mixed results. The first appearing study of CAS/IGS in PAO was conducted by Langlotz, et. al 1997 and reported no clinical benefit to using CAS/IGS. However, they did conclude that the use of CAS/IGS is undoubtedly useful for surgeons starting this technically demanding procedure. This is supported by a more recent study done by Hsieh, et. al 2006 who conducted a two year randomised study of CAS/IGS in PAO and concluded its feasibility to facilitate PAO, but there was not an additional benefit when conventional PAO is done by an experienced surgeon. A study done by Peters, et. Al 2006 studying the learning curve necessary to become proficient at PAO found that “The occurrence of complications demonstrates a substantial learning curve” and thus makes a compelling argument for the use of CAS/IGS. A major obstacle to navigation and CAS/IGS revolves around consistency, intra-operative time and ease of use. Custom made guides and implants may help circumvent these limitations. The use of CAS/CAM in developing custom made guides has been proven very successful in areas of oral maxillofacial surgery, hip arthroplasty, and knee replacement surgeries. Additionally, a significant study in the development of rapid prototyping guides in the treatment of dysplastic hip joints was done by Radermacher et. al 1998. They describe a process of using CAS/CAM within the operational theatre using a desktop planning station and a manufacturing unit to develop what they termed as “templates” to carry out a triple osteotomy. Our group is evaluating and developing strategies in PAO using CAS/IGS and more recently using CAS and computer aided modeling (CAM) to develop custom made guides for acetabular positioning. Our first study (Burch et al.) focused on CAS/IGS in PAO using cadavers and yielded small mean cut (1.97± 0.73mm) and CE angle (4.9± 6.0) errors. Our recent study used full sized high-resolution foam pelvis models (Sawbones. ®. , Vashon, Washington) and used CAS/IGS to carry out the pelvic cuts and CAS/CAM to develop a acetabular positioning guide (APG) by rapid prototyping. The CAS/IGS pelvic cuts results were good (mean error of 3.18 mm ± 1.35) and support our and other studies done using CAS/IGS in PAO. The APG yielded high accuracy and was analysed using four angles with an overall mean angular error of 1.81 (0.55. 0. )and individual angulation was as follows: CE 0.83° ± 0.53, S-AC 0.28° ± 0.19, AcetAV 0.41° ± 0.37, and VCA 0.68° ± 0.27. To our knowledge this is the first developed APG for PAO. The APG we developed was to demonstrate the concept of using a positioning guide to obtain accurate rotation of the acetabular fragment. For a clinical application a refined and sleeker design would be required. Further, because working space within the pelvis is extraordinary constrained, once fitted the APG would need to remain and serve as an implantable cage capable of holding bone graft. A potential material is polyetheretherketone (PEEK). Customised PEEK implants and cages have been established in the literature and is a potential option for PAO. The benefits of an implant not only serve to constrain the acetabular fragment in the ideal position based upon the pre-operative plan, but may also provide the structural support for rotations not other wise possible. Though CAS/IGS is a proven viable option, we envision a potentially simpler method for PAO, the use of a cut guide and an acetabular positioning implant. Using customized guides and implants could potentially circumvent the need for specialised intra-operative equipment and the associated learning curves, by providing guides that incorporate the pre-operational plan within the guide, constraining the surgeon to the desired outcome


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 43 - 43
1 Oct 2012
Yan C Goulet B Chen S Tampieri D Collins D
Full Access

Image-guided spine surgery requires registration between the patient anatomy and the preoperative computed tomography (CT) image. We have previously developed an accurate and robust registration technique for this application by using intraoperative ultrasound to acquire patient anatomy and then registering the ultrasound images to the CT images by aligning the posterior vertebral surfaces extracted from both modalities. In this study, we validate our registration technique across 18 vertebrae on three porcine cadavers. We applied the ultrasound-registration technique on the thoracic and lumbar vertebrae of the porcine cadavers using both single sweeps and double orthogonal sweeps. For each sweep pattern at each vertebra, we also randomly simulated 100 different initial misalignments and registered each misalignment. The resulting registration transformations are compared to gold standard registrations to assess the accuracy and the robustness of the technique. Orthogonal-sweep acquisition was found to be the sweep-pattern that performed the best and yielded a registration accuracy of 1.65 mm across all vertebrae on all porcine cadavers. It was found that the target registration errors (TRE) stay relatively constant with increasing initial misalignment and that the majority (82.7%) of the registrations resulted in TREs below the clinically recommended 2 mm threshold. In addition, it was found that the registration accuracy varies by the sweep pattern and the vertebral level, but neighbouring vertebrae tend to result in statistically similar accuracy. We found that our ultrasound-CT registration technique yields clinically acceptable accuracy and robustness on multiple vertebrae across multiple porcine cadavers