The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods
This work was motivated by the need to capture the spectrum of anatomical shape variability rather than relying on analyses of single bones. A novel tool was developed that combines
The clinical uptake of minimally invasive interventions for intervertebral disc, such as nucleus augmentation, is currently hampered by the lack of robust pre-clinical testing methods that can take into account the large variation in the mechanical behaviour of the tissues. Using computational modelling to develop new interventions could be a way to test scenarios accounting for variation. However, such models need to have been validated for relevant mechanical function, e.g. compressive, torsional or flexional stiffness, and local disc deformations. The aim of this work was to use a novel in-vitro imaging method to assess the validity of computational models of the disc that employed different degrees of sophistication in the anatomical representation of the nucleus. Bovine caudal bone-disc-bone entities (N=6) were dissected and tested in uniaxial compression in a custom-made rig. Forty glass markers were placed on the surface of each disc. The specimens were scanned both with MRI and micro-CT before and during loading. Specimen-specific computational models were built from CT images to replicate the compression test. The anatomy of the nucleus was represented in three ways: assuming a standard diameter ratio, assuming a cylindrical shape with its volume matching that measured from MRI, and deriving the shape directly from MRI. The three types of models were calibrated for force-displacement. The radial displacement of the glass markers were then compared with their experimental displacement derived from CT images. For a similar accuracy in modelling overall force-displacement, the mean error on the surface displacement was 35% for standard ratio nucleus, 38% for image-based cylindrical nucleus, and 32% for MRI-based nucleus geometry. This work shows that, as long as consistency is kept to develop and calibrate