Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of facet joint cartilage degeneration comparable to age-related osteoarthritis in scoliotic adolescents. To better understand the degenerative mechanisms and explore new therapeutic possibilities, we focused on Toll-like receptors (TLRs) which are germline-encoded pattern recognition receptors that recognize pathogens and endogenous proteins such as fragmented extracellular matrix components (alarmins) present in intervertebral discs (IVD) and articular cartilage. Once activated, they regulate the production pro-inflammatory cytokines, proteases and neurotrophins which can lead to matrix catabolism, inflammation and potentially pain. These mechanisms have however not been studied in the context of AIS or facet joints. Facet joints of AIS patients undergoing corrective surgery and of cadaveric donors (non-scoliotic) were collected from consenting patients or organ donors with ethical approval. Cartilage biopsies and chondrocytes were isolated using 3mm biopsy punches and collagenase type 2 digestion respectively. qPCR was used to assess gene expression of the degenerative factors (MMP3, MMP13, IL-1ß, IL-6, IL-8) The biopsies were cut into two equal halves, one was treated for 4 days with a TLR2 agonist (Pam2CSK4, Invivogen) in serum-free chondrocyte media while the other one was cultured in media alone. MMP3, MMP13, IL-6 and
Aim. To evaluate a panel of peripheral blood and synovial fluid biomarkers for the identification of periprosthetic joint infection PJI. Method. Peripheral blood and synovial fluid measurements of CD64, IL-1a, IL-1b, IL-6,
Background. Osteoarthritis (OA) has been described as a non-inflammatory arthritis and yet the choice of drug treatment is NSAIDs. Aim. To test the hypothesis that cytokines and chemokines are associated with inflammation in OA. Methods. Synovium biopsy and synovial fluid of 17 patients undergoing total knee arthroplasty (TKR) were sampled at the onset of their surgery. Histology of synovium and immunoassay of synovial fluid were conducted. A 3 point scale, 3 being the most cellular, was used to assess the cellularity of synovium histology slides, a parameter known to correlate with several markers of OA. Synovial fluid was analysed using a multi-anylate fluorescent immunoassay. In brief, cytokines and chemokines associated with inflammation were quantified, namely IL-12, TNF, IL-10, IL-6, IL-1,
To identify the differences in inflammatory profiles between hip OA, knee OA and non-OA control cohorts and investigate the association between cytokine expression and clinical outcome measurements, specifically pain. A total of 250 individuals were recruited in three cohorts (100 knee OA, 50 hip OA, 100 control). Serum was collected and inflammatory profiles analysed using the Multiplex Human Cytokine Panel (Millipore) on the Luminex 100 platform (Luminex Corp., Austin, TX). The pain, physical function and activity limitations of hip OA cohort were scored using the WOMAC, SF-36, HHS and UCLA scores. All cytokine levels were compared between cohorts individually using Mann–Whitney–Wilcoxon (MWW) test with Bonferroni multiple comparison correction. Within hip OA cohorts, the effect of hip alignment (impingement and dysplasia) and radiographic grade (Kellgren and Lawrence grade, K/L grade) on cytokine levels were accessed by MWW test. Spearman's rank correlation test used to assess the association between cytokines and pain levels. The three cohorts showed distinct inflammatory profiles. Specifically, EGF, FGF-2, MCP-3, MIP-1a,
Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time q-PCR using the comparative ΔΔCt method. Also, protein expression of p16, Ki-67 and Caspase-3 were evaluated in fixed pellets or monolayer cultures and total number of cells was counted on consecutive sections using DAPI and Hematoxylin. Proteoglycan content was evaluated using SafraninO staining or DMMB assay to measure sulfated glycosaminoglycan (sGAG) and antibodies were used to stain for collagen type II expression. We observed 40% higher level of senescent cells in degenerate compare to the non-degenerate discs form unrelated individuals and a 10% increase when we compare degenerate compare to the non-degenerate discs of the same individual. Using the optimal effective and safe doses, curcumin and vanillin cleared 15% of the senescent cells in monolayer and up to 80% in pellet cultures. Also, they increased the number of proliferating and apoptotic cells in both monolayer and pellets cultures. The increase in apoptotic cell number and caspase-3/7 activity was specific to degenerate cells. Following treatment, mRNA expression levels of SASP factors were decreased by four to 32-fold compared to the untreated groups. Senescent cell clearance decreased, protein expression of MMP-3 and −13 by 15 and 50% and proinflammatory cytokines levels of IL-1, IL-6 and
Post operative prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, requiring revision surgery, but a gold standard for the diagnosis and the treatment of PIJ is still lacking [1]. SuPAR, the soluble urokinase plasminogen activation receptor, has been recently described as a powerful diagnostic and prognostic tool, able not only to detect sepsis but also to discriminate different grade of sepsis severity [2,3]. This study aimed to examine the diagnostic value of SuPAR in post operative PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. The level of SuPAR have been measured in PJI patients and controls (patients undergoing prosthesis revision without infection), and correlated with pro and anti inflammatory markers (CRP C-reactive protein, IL-6, IL-1 TNFα, IL-10, IL-12,
Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a major cause of disability in the adult population with its prevalence expected to increase dramatically over the next 20 years. Although current therapies can alleviate symptoms and improve function in early course of the disease, OA inevitably progresses to end-stage disease requiring total joint arthroplasty. Mesenchymal stromal cells (MSCs) have emerged as a candidate cell type with great potential for intra-articular (IA) repair therapy. However, there is still a considerable lack of knowledge concerning their behaviour, biology and therapeutic effects. To start addressing this, we explored the secretory profile of bone marrow derived MSCs in early and end-stage knee OA synovial fluid (SF). Subjects were recruited and categorised into early [Kellgren-Lawrence (KL) grade I and II, n=12] and end-stage (KL grade III and IV, n=11) knee OA groups. The SF proteome of early and end-stage OA was tested before and three days after the addition of bone marrow MSCs (16.5×10^3, single donor) using multiplex ELISA (64 cytokines) and mass spectrometry (302 proteins detected). Non parametric Wilcoxon-signed rank test for paired samples was used to compare the levels of proteins before and after addition of MSCs in early and end-stage knee OA SF. Significant differences were determined after multiple comparisons correction (FDR) with a p<0.05. Gender distribution and BMI were not statistically different between the two cohorts (p>0.05). However, patients in early knee OA cohort were significantly younger (44.7 years, SD=7.1) than patients in the end-stage cohort (58.6 years, SD=4.4; p<0.05). In both early and end-stage knee OA, MSCs increased the levels of VEGF-A (by 320.24 pg/mL), IL-6 (by 826.78 pg/mL) and
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
We examined the usefulness of neutrophil CD64 expression in detecting local musculoskeletal infection and the impact of antibiotics on its expression. Of 141 patients suspected of musculoskeletal infection, 46 were confirmed by microbiological culture to be infected and 95 had infection excluded. The median CD64 count of patients with localised infection was 2230 molecules per cell (interquartile range (IQR) 918 to 4592) and that of the patients without infection was 937 molecules per cell (IQR 648 to 1309) (p <
0.001). The level of CD64 correlated with the CRP level in patients with infection, but not in those without infection (r = 0.59, p <
0.01). Receiver operator characteristic curve analysis revealed that CD64 was a good predictor of local infection. When the patients were subdivided into two groups based on the administration of antibiotics at the time of CD64 sampling, the sensitivity for detecting infection was better in those who had not received antibiotics. These results suggest that measurement of CD64 expression is a useful marker for local musculoskeletal infection.