Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 112 - 112
11 Apr 2023
Oliver W Nicholson J Bell K Carter T White T Clement N Duckworth A Simpson H
Full Access

The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic callus formation (Radiographic Union Score for HUmeral fractures <8), one had SBC on 6wk ultrasound (and united) and the other two had non-bridging or absent sonographic callus (both developed a nonunion). Ultrasound assessment of humeral shaft fracture healing was reliable and predictive of nonunion, and may be a useful tool in defining the risk of nonunion among patients with reduced radiographic callus formation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 36 - 36
4 Apr 2023
Pastor T Zderic I van Knegsel K Link B Beeres F Migliorini F Babst R Nebelung S Ganse B Schöneberg C Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired cadaveric studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 37 - 37
4 Apr 2023
Pastor T Zderic I van Knegsel K Richards G Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails. Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking. Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024. Torsional stiffness remained non significantly different, p≥0.086. Torsional deformation in group2 was significantly higher compared to all other groups, p≤0.017. Shear displacement remained non significantly different, p≥0.112. From a biomechanical perspective, helical plating with 45° and 90° may be considered as a valid alternative fixation technique to standard straight plating of proximal third humeral fractures. Intramedullary nails demonstrated higher axial and bending stiffness as well as lower fracture gap movements during axial loading compared to all plate designs. However, despite similar torsional stiffness they were associated with higher torsional movements during internal/external rotation as compared to all investigated plate designs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 96 - 96
4 Apr 2023
Pastor T Kastner P Souleiman F Gehweiler D Link B Beeres F Babst R Gueorguiev B Knobe M
Full Access

Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk. MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial arteries and plates were evaluated. Following, all specimens were dissected, and distances to the axillary, radial and musculocutaneous nerve were evaluated. None of the specimens demonstrated injuries of the anatomical structures at risk after MIPO with all investigated plate designs. Closest overall distance (mm(range)) between each plate and the radial nerve was 1(1-3) in group1, 7(2-11) in group2, 14(7-25) in group3 and 6(3-8) in group4. It was significantly longer in group3 and significantly shorter in group1 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the musculocutaneous nerve was 16(8-28) in group1, 11(7-18) in group2, 3(2-4) in group3 and 6(3-8) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the brachial artery was 21(18-23) in group1, 7(6-7) in group2, 4(3-5) in group3 and 7(6-7) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.021. MIPO with 45°- and 90°-helical plates as well as ALPS is safely feasible and showed a significant greater distance to the radial nerve compared to straight plates. However, distances remain low, and attention must be paid to the musculocutaneous nerve and the brachial artery when MIPO is used with ALPS, 45°- and 90°-helical implants. Anterior parts of the deltoid insertion will be detached using 90°-helical and ALPS implants in MIPO-technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 33 - 33
4 Apr 2023
Pareatumbee P Yew A Koh J Zainul-Abidin S Howe T Tan M
Full Access

To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis. CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The humeral head apex (surgical entry point) was translated by 1mm in both anterior-posterior and medio-lateral directions to generate eight entry points. Total nail protrusion surface area, maximum nail protrusion distance into cortical shell and top, middle, bottom deviation between nail and intramedullary cavity centre were investigated. Statistical analysis between the apex and translated entry points was conducted using paired t-test. A posterior-lateral translation was considered as the optimal entry point with minimum protrusion in comparison to the anterior-medial translation experiencing twice the level of protrusion. Statistically significant differences in cortical protrusion were found in anterior-medial and posterior-lateral directions producing increased and decreased level of protrusion respectively compared to the apex. The bottom anterior-posterior deviation distance appeared to be a key predictor of cortical breach with the distal nail being more susceptible. Furthermore, nails with anterior translation generated higher anterior-posterior deviation (>4mm) compared to posterior translation (<3mm). Aside from slight posterolateral translation of the entry point from the apex, inclusion of a distal posterior-lateral bend into current straight nail design could improve nail fitting within the curved humeral bone, potentially improving distal working length within the flat and narrow medullary canal of the distal humeral shaft


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 121 - 121
4 Apr 2023
Kale S Mehra S Gunjotikar A Patil R Dhabalia P Singh S
Full Access

Osteochondromas are benign chondrogenic lesions arising on the external surface of the bone with aberrant cartilage (exostosis) from the perichondral ring that may contain a marrow cavity also. In a few cases, depending on the anatomical site affected, different degrees of edema, redness, paresthesia, or paresis can take place due to simple contact or friction. Also, depending on their closeness to neurovascular structures, the procedure of excision becomes crucial to avoid recurrence. We report a unique case of recurrent osteochondroma of the proximal humerus enclosing the brachial artery which makes for an important case and procedure to ensure that no relapse occurs. We report a unique case of a 13-year-old female who had presented with a history of pain and recurrent swelling for 5 years. The swelling size was 4.4 cm x 3.7 cm x 4 cm with a previous history of swelling at the same site operated in 2018. CT reports were suggestive of a large well defined broad-based exophytic diaphyseal lesion in the medial side of the proximal humerus extending posteriorly. Another similar morphological lesion measuring approximately 9 mm x 7 mm was noted involving the posterior humeral shaft. The minimal distance between the lesion and the brachial artery was 2 mm just anterior to the posterio-medial growth. Two intervals were made, first between the tumor and the neurovascular bundle and the other between the anterior tumor and brachial artery followed by exostosis and cauterization of the base. Proper curettage and excision of the tumor was done after dissecting and removing the soft tissue, blood vessels, and nerves so that there were very less chances of relapse. Post-operative X-ray was done and post 6 months of follow-up, there were no changes, and no relapse was observed. Thus, when presented with a case of recurrent osteochondroma of the proximal humerus, osteochondroma could also be in proximity to important vasculature as in this case enclosing the brachial artery. Thus, proper curettage and excision should be done in such cases to avoid recurrence


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 552 - 556
1 Apr 2009
Hannouche D Ballis R Raould A Nizard RS Masquelet AC

We describe a lateral approach to the distal humerus based on initial location of the superficial branches of the radial nerve, the inferior lateral cutaneous nerve of the arm and the posterior cutaneous nerve of the forearm. In 18 upper limbs the superficial branches of the radial nerve were located in the subcutaneous tissue between the triceps and brachioradialis muscles and dissected proximally to their origin from the radial nerve, exposing the shaft of the humerus. The inferior lateral cutaneous nerve of the arm arose from the radial nerve at the lower part of the spiral groove, at a mean of 14.2 cm proximal to the lateral epicondyle. The posterior cutaneous nerve of the forearm arose from the inferior lateral cutaneous nerve at a mean of 6.9 cm (6.0 to 8.1) proximal to the lateral epicondyle and descended vertically along the dorsal aspect of the forearm. The size and constant site of emergence between the triceps and brachioradialis muscles constitute a readily identifiable landmark to explore the radial nerve and expose the humeral shaft


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 14 - 14
1 Aug 2013
Drury C Elias-Jones C Tait G
Full Access

Arthritis of the glenohumeral joint accompanied by an irreparable tear of the rotator cuff can cause severe pain, disability and loss of function, particularly in the elderly population. Anatomical shoulder arthroplasty requires a functioning rotator cuff, however, reverse shoulder arthroplasty is capable of addressing both rotator cuff disorders and glenohumeral deficiencies. The Aequalis Reversed Shoulder Prosthesis design is based on two bio-mechanical principles by Grammont; a medialized center of rotation located inside the glenoid bone surface and second, a 155 degree angle of inclination. Combined, they increase the deltoid lever arm by distalizing the humerus and make the prosthesis inherently stable. 24 consecutive primary reverse total shoulder arthroplasties were performed by a single surgeon for arthritis with rotator cuff compromise and 1 as a revision for a failed primary total shoulder replacement between December 2009 and October 2012. Patients were assessed postoperatively with the use of the DASH score, Oxford shoulder score, range of shoulder motion and plain radiography with Sirveaux score for scapular notching. Mean age at the time of surgery was 72.5 years (range 59 to 86). Average follow up time was 19.4 months (range 4 to 38). Functional outcome scores from our series were comparable with patients from other follow up studies of similar prosthesis design. All patients showed improvement in range of shoulder movement postoperatively. Complications included one dislocation, one acromion fracture and one humeral shaft fracture. No cases of deep infection were recorded. Overall, the short-term clinical results were promising for this series of patients and indicate reverse shoulder arthroplasty as an appropriate treatment for this group of patients


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 355 - 355
1 Jul 2014
Dun S Warlop D Swope S
Full Access

Summary Statement. The current biomecahnical study demonstrated that the stemless peripheral leg humeral component prototype and central screw humeral component prototype achieved similar initial fixation as stemmed Global Advantage humeral component in terms of resultant micromotion in total shoulder arthroplasty. Introduction. A stemless humeral component may offer a variety of advantages over its stemmed counterpart, e.g. easier implantation, preservation of humeral bone stock, fewer humeral complications, etc. However, the initial fixation of a stemless humeral component typically depends on cementless metaphyseal press-fit, which could pose some challenges to the initial stability. Long-term success of cementless implants is highly related to osseous integration, which is affected by initial implant-bone interface motion. 1. The purpose of the study was to biomechanically compare micromotion at the implant-bone interface of three humeral components in total shoulder arthroplasty. Patients & Methods. Three humeral components were evaluated: Global Advantage, a central screw prototype, and a peripheral leg prototype. All components were the smallest sizes available. Global Advantage is a stemmed design. Both central screw prototype and peripheral leg prototype are stemless designs. Five specimens were tested for each design. Composite analogue humeral models were utilized to simulate the humeral bone. The cortical wall had a thickness of 3 mm and a density of 481 kg/m. 3. , while the cancellous density was 80 kg/m. 3. The model was custom fabricated to accommodate 40 mm humeral component and had a 45° resected surface and a square base to facilitate test setup. Each humeral component was implanted per its surgical technique. The construct was clamped in a vise with the humeral shaft angled at 27°. A MTS test system was employed to conduct the test. A sinusoidal compressive load from 157 N to 1566 N (2BW) was applied to the humeral component at 1 Hz for 100 cycles. The implant-bone interface micromotion was measured with a digital image correlation system which had a resolution of less than 1 micron. The micromotion measurement was transformed to 2 components: 1 was parallel and the other perpendicular to the humeral resection surface. Peak-valley micromotion from the last 10 cycles were averaged and utilised for data analyses. A one-way ANOVA and post-hoc Tukey tests were performed to compare the micromotion of different designs (α=0.05). Results. Micromotion of Global Advantage parallel to the resection (X-Axis) was significantly less than that of central screw prototype and peripheral leg prototype. Micromotion of peripheral leg prototype perpendicular to the resection (Y-Axis) was significantly less than Global Advantage and central screw prototype. There was no significant difference between different designs in resultant micromotion. Discussion/Conclusion. Clinical studies have shown that current stemless shoulder prosthesis yielded encouraging results in mid-term follow-ups. Particularly, the stemless Arthrex Eclipse humeral component, a central screw design, has been reported to have a secure bony fixation and ingrowth at an average of 23 months postoperatively. 4. The current study demonstrated that the stemless peripheral leg prototype and central screw prototype achieved similar initial fixation as stemmed Global Advantage in terms of resultant micromotion, and provided biomechanical evidence that stemless humeral components could have comparable initial stability to stemmed counterparts


Bone & Joint Research
Vol. 6, Issue 2 | Pages 82 - 89
1 Feb 2017
Nagra NS Zargar N Smith RDJ Carr AJ

Objectives

All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors.

Materials and Methods

A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1539 - 1544
1 Nov 2006
Abu-Rajab RB Stansfield BW Nunn T Nicol AC Kelly IG

This study evaluated the effect on movement under load of three different techniques for re-attachment of the tuberosities of the humerus using test sawbones. In the first, the tuberosities were attached both to the shaft and to each other, with one cerclage suture through the anterior hole in the prosthesis. The second technique was identical except for omission of the cerclage suture and in the third the tuberosities were attached to the prosthesis and to the shaft. An orthogonal photogrammetric system allowed all segments to be tracked in a 3D axis system. The humeri were incrementally-loaded in abduction, and the 3D linear and angular movements of all segments were calculated. Displacement between the tuberosities and the shaft was measured.

The first and second techniques were the most stable constructs, with the third allowing greater separation of fragments and angular movement. Separation at the midpoint of the tuberosities was significantly greater using the latter technique (p < 0.05). The cerclage suture added no further stability to the fixation.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1256 - 1259
1 Sep 2008
Kedgley AE DeLude JA Drosdowech DS Johnson JA Bicknell RT

This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device.

The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery.

Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 586 - 594
1 Apr 2010
Sonnabend DH Howlett CR Young AA

The establishment of a suitable animal model of repair of the rotator cuff is difficult since the presence of a true rotator cuff anatomically appears to be restricted almost exclusively to advanced primates. Our observational study describes the healing process after repair of the cuff in a primate model. Lesions were prepared and repaired in eight ‘middle-aged’ baboons. Two each were killed at four, eight, 12 and 15 weeks post-operatively. The bone-tendon repair zones were assessed macroscopically and histologically.

Healing of the baboon supraspinatus involved a sequence of stages resulting in the reestablishment of the bone-tendon junction. It was not uniform and occurred more rapidly at the sites of suture fixation than between them. Four weeks after repair the bone-tendon healing was immature. Whereas macroscopically the repair appeared to be healed at eight weeks, the Sharpey fibres holding the repair together did not appear in any considerable number before 12 weeks. By 15 weeks, the bone-tendon junction was almost, but not quite mature.

Our results support the use of a post-operative rehabilitation programme in man which protects the surgical repair for at least 12 to 15 weeks in order to allow maturation of tendon-to-bone healing.