Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for tendon healing. In a rat patellar tendon window defect model, we investigated whether the administration of recombinant SPARC protein can modulate tendon healing. Besides the increased mRNA expression of collagen type 1 and the downregulation of collagen type 3, a robust increase in the expression of pro-regenerative fibroblast markers in the repair tissue after a single treatment with rSPARC protein was observed. Additionally, pro-fibrotic markers were significantly decreased by the administration of rSPARC. Determination of structural characteristics was also assessed, indicating that the ECM structure can be improved by the application of rSPARC protein. Therefore, we believe that SPARC plays an important role for tendon healing and the application of recombinant SPARC to tendon defects has great potential to improve functional tendon repair.
Bone homeostasis is a highly regulated process involving pathways in bone as WNT, FGF or BMP, but also requiring support from surrounding tissues as vessels and nerves. In bone diseases, the bone-vessel-nerve triad is impacted. Recently, new players appeared as regulators of bone homeostasis: microRNAs (miRNA). Five miRNAs associated with osteoporotic fractures are already known, among which miR-125b is decreasing bone formation by downregulating human mesenchymal stem cells (hMSCs) differentiation. Other miRNAs, as miR-214 (in cluster with miR-199a), are secreted by osteoclasts to regulate osteoblasts and inhibit bone formation. This forms a very complex regulatory network. hMSCs and osteoblasts (n=3) were transfected with mimic/antagomiR of miR-125b, miR-199a-5p or miR-214, or with a scrambled miRNA (negative control) in osteogenic differentiation calcium-enriched medium (Ca++). Mineralization was assessed by Alizarin Red/CPC staining, miRNA expression by qPCR and protein by western blotting. Exposure of hMSCs or osteoblasts to Ca++ increased mineralization compared to basal medium. hMSCs transfected with miR-125b mimic in Ca++ presented less mineralization compared to scramble. This correlated with decreased levels of BMPR2 and RUNX2. hMSCs transfected with miR-125b inhibitor presented higher mineralization. Interestingly, hMSCs transfected with miR-214 mimic in Ca++ presented no mineralization while miR-214 inhibitor increased mineralization. No differences were observed in hMSCs transfected with miR-199a-5p modulators. On the contrary, osteoblasts transfected with miR-199a-5p mimic present less mineralization than scrambled-transfected and same was observed for miR-214 and miR-125b mimics. We highlight that miR-125b and miR-214 decrease mineralization of hMSCs in calcium-enriched medium. We noticed that miR-199a-5p is able to regulate mineralization in osteoblasts but not in hMSCs suggesting that this effect is cell-specific. Interestingly, the cluster miR-199a/214 is known as modulator of vascular function and could thus contribute to bone remodeling via different ways. With this work we slightly open the door to possible therapeutic approaches for bone diseases.
Osteoporosis (OP) and osteoarthritis (OA) are leading causes of musculoskeletal dysfunction in elderly, with chondrocyte senescence, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability as prominent features. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Not surprisingly, the development of OP and OA correlate with dysregulations of the gut microflora in rodents and humans. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes to regulate joint homeostasis. Modulating the abundance of specific gut bacteria, like Lactobacillus and Bifidobacterium, by probiotics or fecal microbiota transplantation appears to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue and holds potential to slow down OP development. The talk will highlight treatment options with probiotics or metabolites for modulating the progression of OA and OP.
Calcium is an important element for a wide range of physiological functions including muscle contraction, neuronal activity, exocytosis, blood coagulation and cell communication. In the musculoskeletal system calcium is crucial for the structural integrity of bones, teeth, intervertebral disc and articular cartilage. At the cellular level calcium acts as a second messenger. Calcium signalling uses intracellular calcium ions to drive intracellular communication and signal transduction processes. When calcium enters the cell it exerts allosteric regulatory effects on many enzymes and proteins. Examining the role of calcium in chondrocyte biology is important for understanding the role for this divalent ion in the metabolic modulation of chondrocyte function in health and disease. This includes the study of calcium transport systems such as channels, transporters and pumps involved in calcium homeostasis in chondrocytes and how existing pharmacological drugs act on these transport systems. L-type calcium channel blockers are drugs used as cardiac antiarrhythmics or antihypertensives, depending on whether the drugs have higher affinity for the heart (the phenylalkylamines, like verapamil), or for the blood vessels (the dihydropyridines, like nifedipine). L-type calcium channels are present in many musculoskeletal tissues including skeletal muscle, smooth muscle, bone and cartilage. L-type calcium channel inhibitors like nifedipine used for the treatment of some forms of hypertension modulate calcium-mediated events in chondrocytes under dynamic loading, thus affecting metabolism, osmotic responses and extracellular matrix turnover in cartilage. The aim of our work is to understand the impact of L-type calcium channel inhibitors used for the treatment of hypertension on chondrocytes and on the chondrogenic differentiation of bone marrow derived mesenchymal stem cells (MSCs). This knowledge will enhance our understanding of the development of osteoarthritis (OA) and may lead to new opportunities for chondroprotection and regenerative medicine for OA. We have used electrophysiology to demonstrate L-type calcium currents in chondrocytes immediately after pharmacological activation with the calcium channel opener Bay-K8644. We have also used immunohistochemistry to demonstrate expression of the a1C subunit Cav1.2 (CACNA1C) in human chondrocytes and MSCs. Inhibitors of L-type calcium channels such as nifedipine downregulate mitochondrial respiration and ATP production in MSCs but not in chondrocytes. Nifedipine inhibits proliferation of chondrocytes and enhances glycolytic capacity in chondrocytes, promoting glycolytic reserve in both MSCs and chondrocytes. Nifedipine can also stimulate chondrogenic differentiation in MSCs (with or without growth factors). Metabolic responses to nifedipine differs in mesenchymal stem cells and chondrocytes highlighting important metabolic differences between these cells. In summary, antihypertensive drugs such as nifedipine can affect the biological function of chondrocytes and MSCs and may modulate the course of OA progression and impact on cartilage repair.
Mechanical loading plays an essential role in both tendon development and degradation. However, the underlying mechanism of how tendons sense and response to mechanical loading remains largely unknown. SPARC, a multifunctional extracellular matrix glycoprotein, modulates cell extracellular matrix contact, cell-cell interaction, ECM deposition and cell migration. Adult mice with SPARC deficiency exhibited hypoplastic tendons in load-bearing zone. By investigating tendon maturation in different stages, we found that hypoplastic tendons developed at around postnatal 3 weeks when the mice became actively mobile. The
Industrialized countries experience a population aging. Elderly patients, due to the experienced immunity, have a constant pro-inflammatory milieu. Little is known on how adaptive immunity impacts the tissue homeostasis and regeneration. The standardized housing of lab animals is specific pathogen free (SPF). However, this housing condition hinders antigen exposure and thus an aging of the adaptive immune system. We hypothesized that exposure to antigens and a developing adaptive immunity will impact tissue homeostasis and regeneration in mice. Mice kept under SPF housing or non-SPF were examined towards their immune status via flow cytometry, bone structure via microCT and bone competence via biomechanical torsional testing. MSCs from these mice were analyzed regarding their differentiation potential and ECM production under various immune cell signaling. Bone regeneration was analyzed
Bisphosphonates play an important role in the treatment of catabolic bone diseases such as osteoporosis. In addition to their anti-resorptive activity exerted by their proapoptotic effect on osteoclasts, recent data suggest that nitrogen-containing bisphosphonates (N-BP) may also promote osteogenic differentiation by an unknown mechanism. Similar bone-anabolic effects have been attributed to cholesterol-lowering statins, which represent another class of mevalonate pathway inhibitors besides N-BP, suggesting a common mode of action. In vascular endothelial cells statins were recently shown to activate the Mek5/Erk5 mitogen-activated protein kinase cascade, which plays an important role in cellular differentiation, apoptosis or inflammatory processes. Here we evaluated whether N-BPs may also target the Mek5/Erk5 pathway and analysed the consequence of Erk5 activation on bone-relevant gene expression, calcification and osteoblast differentiation. We show that N-BP dose-dependently activate Erk5 in primary human endothelial cells and osteoblasts. The mechanism likely involves farnesyldiphosphate synthase (FDPS) inhibition and subsequent inactivation of the small GTPase Cdc42 since siRNA-mediated knockdown of both genes could reproduce N-BP-induced ERK5 activation. ERK5 activation resulted in regulation of several bone-relevant genes and was required for calcification and osteoblastic differentiation of mesenchymal stems cells as evident by the lack of alkaline phosphatase induction and alizarin-red staining observed upon Erk5 knockdown or upon differentiation initiation in presence of a pharmacological Erk5 inhibitor.Background/Aims
Methods and Results