header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 94 - 94
2 Jan 2024
Lin Y Lian W Chen Y Jahr H Wang F
Full Access

Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity. Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining. HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts. Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 27 - 27
1 Nov 2021
Williamson A Bateman LE Maitre CL Kelly D Aberdein N
Full Access

Introduction and Objective

Global prevalence of obesity has risen almost three-fold between 1975 and 2016. Alongside the more well-known health implications of obesity such as cardiovascular disease, cancer and type II diabetes, is the effect of male obesity on testosterone depletion and hypogonadism. Hypogonadism is a well-known contributor to the acceleration of bone loss during aging, and obesity is the single biggest risk factor for testosterone deficiency in men. Understanding the micro and macro structural changes to bone in response to testosterone depletion in combination with a high fat ‘Western’ diet, will advance our understanding of the relationship between obesity and bone metabolism. This study investigated the impact of surgically induced testosterone depletion and subsequent testosterone treatment upon bone remodelling in mice fed a high fat diet.

Materials and Methods

Male ApoE−/− mice were split into 3 groups at 7 weeks of age and fed a high fat diet: Sham surgery with placebo treatment, orchiectomy surgery with placebo treatment, and orchiectomy surgery with testosterone treatment. Surgeries were performed at 8 weeks of age, followed by fortnightly testosterone treatment via injection. Mice were sacrificed at 25 weeks of age. Tibiae were collected and scanned ex-vivo at 4.3μm on a SkyScan 1272 Micro-CT scanner (Bruker). Left tibiae were used for assessment of trabecular and cortical Volumes of Interest (VOIs) 0.2mm and 1.0mm respectively from the growth-plate bridge break. Tibiae were subsequently paraffin embedded and sectioned at 4μm prior to immunohistochemical evaluation of alkaline phosphatase.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 85 - 85
11 Apr 2023
Williamson A Bateman L Kelly D Le Maitre C Aberdein N
Full Access

The effect of high-fat diet and testosterone replacement therapy upon bone remodelling was investigated in orchiectomised male APOE-/- mice. Mice were split in to three groups: sham surgery + placebo treatment (control, n=9), orchiectomy plus placebo treatment (n=8) and orchiectomy plus testosterone treatment (n=10). Treatments were administered via intramuscular injection once a fortnight for 17 weeks before sacrifice at 25 weeks of age. Tibiae were scanned ex-vivo using µCT followed by post-analysis histology and immunohistochemistry. Previously presented µCT data demonstrated orchiectomised, placebo treated mice exhibited significantly reduced trabecular bone volume, number, thickness and BMD compared to control mice despite no significant differences in body weight. Trabecular parameters were rescued back to control levels in orchiectomised mice treated with testosterone. No significant differences were observed in the cortical bone. Assessment of TRAP stained FFPE sections revealed no significant differences in osteoclast or osteoblast number along the endocortical surface. IHC assessment of osteoprotegerin (OPG) expression in osteoblasts is to be quantified alongside markers of osteoclastogenesis including RANK and RANKL. Results support morphological analysis of cortical bone where no change in cortical bone volume or density between groups is in line with no significant change in osteoblast or osteoclast number and percentage across all three groups. Future work will include further IHC assessment of bone remodelling and adiposity, as well as utilisation of mechanical testing to establish the effects of observed morphological differences in bone upon mechanical properties. Additionally, the effects of hormone treatments upon murine-derived bone cells will be investigated to provide mechanistic insights


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).