Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 532 - 532
1 Nov 2011
Lesaichot V Sailhan F Leperlier D Viateau V Petite H
Full Access

Purpose of the study: The process of bone lengthening involves three phases: a latence period, distraction, then healing. The healing phase required stability maintained by an external fixator (EF) for 1.16 months/cm lengthening. This time exposes the patient to serious complications. The objective is to accelerate the healing phase in order to shorten the time the patient has to wear the EF. The effect of BMP on osteogenesis in distraction remains a controversial issue. This work was conducted to evaluate the benefit provided by rhBMP-2 for healing the regenerate bone after distraction.

Material and methods: Thirty-nine subadult male rabbits were selected at random. On day 0, a tibial osteotomy was performed followed by installation of a M101 EF. After the latency period of seven days, the distraction began at the rate of 0.5mm/12 h for 21 days. At day 28, at the end of distraction, a new operation was performed and three groups of 13 individuals were created at random. The first group received no material, the second a collagen type 1 sponge, and the third group a collagen type 1 sponge soaked in 100 μg/kg rhBMP-2. The animals were monitored with x-rays, absorptiometry and ultrasound for the qualitative and quantitative analysis. Histological and biomechanical analyses were performed at two months.

Results: Our complication rate was 41%. Qualitative analysis of the x-rays showed, in group 3, the development of more or less voluminous and dense, sometimes hypertrophic calluses. The progression curves of the bone mineral content showed higher values in group 3. The bone mineral content curves remained nevertheless parallel for the three groups. The calluses were thus denser in group 3 but with an early peak density. Groups 1 and 2 had equivalent radiographic and absorptiometric results. The statistical analysis of the imaging findings is ongoing. The histology and biomechanical exams are being performed.

Discussion: The preliminary results show that rhBMP-2 used early in the healing phase enables formation of more dense and hypertrophic calluses. rhBMP-2 does not acceleration the rate of callus formation but stimulates its mineralization. Use of a collagen sponge alone had no effect on healing. Analysis of the histological and mechanic properties observed in the three groups will provide a more precise description of the hypertrophic and strongly mineralized calluses.

Conclusion: Our early results show superior bone mineralization in the treated group.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration.

Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.