Decellularization techniques have advanced to reduce the risk of immune rejection in transplantation. Validation of these protocols typically relies on Crapo's criteria. 1. , which include the absence of visible nuclei and low DNA content. In our study, five decellularization protocols were compared to determine the optimal approach for human fascia lata (HFL) samples. However, our findings raised questions as to why recipients can still develop immunity despite meeting validation criteria. HFL samples were decellularized using four protocols with SDS-Triton X100-DNase (D1 to D4-HFL) and one protocol using solvent-detergent-based baths (D5-HFL). The decellularized samples (D-HFL) were compared to native samples (N-HFL) using histology, and DNA content was measured. The human leukocyte antigen (HLA) content within the matrix was assessed using western blot analysis. Both D-HFL and N-HFL samples, along with negative control patches, were implanted in the backs of 28 Wistar rats. Anti-human IgG serum levels were evaluated after one month. H&E and Hoechst staining revealed the absence of residual cells in all decellularization protocols. DNA content was consistently below the critical threshold (p<0.05). All implanted D-HFL samples resulted in significantly lower anti-human IgG levels compared to N-HFL (p<0.01). However, 2.5 out of 4 rats developed immunity after being implanted with D1 to D4-HFL, with varying levels of anti-human IgG. Only rats implanted with D5-HFL showed undetectable levels of IgG and were considered non-immunized. Western blot analysis indicated that only D5-HFL had a residual
Blood transfusion, organ and bone marrow transplantation and allogeneic tissue grafting create the potential for significant immunological challenges through the introduction of non-genetically identical major (HLA) and minor histocompatibility antigens (“allo-antigens”) into the body. Strategies to avoid the complications of immune responses against allo-antigens (transfusion reactions, rejection and graft versus host disease) include
The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA. We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood mononuclear cells (PBMCs). Gene ontology (GO) enrichment analysis was conducted by DAVID. The protein association networks of gene modules were generated by STRING.Objectives
Methods
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.