Hindfoot disorders are complex 3D deformities. Current literature has assessed their influence on the full leg alignment, but the superposition of the hindfoot on plain radiographs resulted in different measurement errors. Therefore, the aim of this study is to assess the hindfoot alignment on Weight-Bearing CT (WBCT) and its influence on the radiographic Hip-Knee-Ankle (HKA) angle. A retrospective analysis was performed on a study population of 109 patients (mean age of 53 years ± 14,49) with a varus or valgus hindfoot deformity. The hindfoot angle (HA) was measured on the WBCT while the
Abstract. Objectives. Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if deep learning methods can predict FTA and
Introduction. With the development of 3D printing technology, there are many different types of PSI in the world. The accuracy of patient specific instrumentation (PSI) in primary total knee arthroplasty (TKA) is dependent on appropriate placement of the cutting blocks. However, previous reports on one type of PSI measured the difference between postoperative prosthetic alignment and postoperative mechanical axis and thus these reports did not evaluate intraoperative comparison of PSIs between two different designs. The purpose of this study was to evaluate the intraoperative accuracy of two different designed PSIs (My knee, Medacta International, Castel San Pietro, Switzerland) with two examiners using CT free navigation system (Stryker, Mahwar, NJ, USA) in regards to sagittal and coronal alignment. Methods. We enrolled 78knees (66 patients) with a primary cemented TKA using two different designed CT-based PSIs (My knee, Medacta International, Castel San Pietro, Switzerland). All operations were performed by two senior surgeons who have experience with greater than 500 TKAs and greater than 200 navigated TKAs. Two examiners were same two surgeons. The study period was between June 2015 and November 2016. The local ethics' committee approved the study prior to its initiation, and informed consent was obtained from all patients. After placement of the PSI on the femur and tibia, the position of the PSI was evaluated by s intraoperative navigation. Two examiners placed two different types (STD(standard) and MIS(minimum invasive surgery)) of PSI on same joint. As required by the PSI, only soft- tissue was removed and osteophytes were left in place. Femoral MIS PSI was required partial remove of lateral cartilage. For the femur, the coronal position in relation to the mechanical axis were documented. For the tibia, the coronal alignment and the tibial slope were documented. Of note, intraoperative modifications to the PSI were not made based upon the results of the navigation. Rather, the findings of the intraoperative navigation were simply documented. Results. The mean age of the cohort was 72.9±7.5years (range, 55–85years). The study included 11men and 55women, with a mean height of 151±8.2cm (range, 135–175cm), mean weight of 59.4±4.3kg (range, 42–82kg), and a mean of Body Mass Index of 25.9±3.6 (range, 17.2–36.4).