Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 65 - 65
2 Jan 2024
Callens S Burdis R Cihova M Kim J Lau Q Stevens MM
Full Access

Cells typically respond to a variety of geometrical cues in their environment, ranging from nanoscale surface topography to mesoscale surface curvature. The ability to control cellular organisation and fate by engineering the shape of the extracellular milieu offers exciting opportunities within tissue engineering. Despite great progress, however, many questions regarding geometry-driven tissue growth remain unanswered. Here, we combine mathematical surface design, high-resolution microfabrication, in vitro cell culture, and image-based characterization to study spatiotemporal cell patterning and bone tissue formation in geometrically complex environments. Using concepts from differential geometry, we rationally designed a library of complex mesostructured substrates (10. 1. -10. 3. µm). These substrates were accurately fabricated using a combination of two-photon polymerisation and replica moulding, followed by surface functionalisation. Subsequently, different cell types (preosteoblasts, fibroblasts, mesenchymal stromal cells) were cultured on the substrates for varying times and under varying osteogenic conditions. Using imaging-based methods, such as fluorescent confocal microscopy and second harmonic generation imaging, as well as quantitative image processing, we were able to study early-stage spatiotemporal cell patterning and late-stage extracellular matrix organisation. Our results demonstrate clear geometry-dependent cell patterning, with cells generally avoiding convex regions in favour of concave domains. Moreover, the formation of multicellular bridges and collective curvature-dependent cell orientation could be observed. At longer time points, we found clear and robust geometry-driven orientation of the collagenous extracellular matrix, which became apparent with second harmonic generation imaging after ∼2 weeks of culture. Our results highlight a key role for geometry as a cue to guide spatiotemporal cell and tissue organisation, which is relevant for scaffold design in tissue engineering applications. Our ongoing work aims at understanding the underlying principles of geometry-driven tissue growth, with a focus on the interactions between substrate geometry and mechanical forces


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 241 - 241
1 Jul 2014
McCarthy H Archer C
Full Access

Summary Statement. Extended expansion of cells derived from equine articular cartilage reveal maintenance of chondrogenic potency and no evidence of senescence up to 100 population doublings. The data suggests the reclassification of these cells from progenitor cells to stem cells. Introduction. One sign of ‘in vitro aging’ is the diminishing capacity for cell division. In contrast to embryonic stem cells that show no loss of proliferative potency, the maximal population doublings (PD) for mesenchymal stem cells (MSCs) in vitro is reported to be between 30 and 40 replications 1,2,3. We have isolated a population of chondroprogenitor cells from articular cartilage of several species, including equine4. These cells have demonstrated functional equivalence in their differentiation capacity when compared with MSCs but have the advantage of retaining the highly desirable stable (permanent) chondrocyte phenotype. In this study, we examined the age-related capacity of these cells for extended division and retention of potency. Methods. Chondroprogenitors were isolated from equine articular cartilage by adhesion onto fibronectin5. Cells were isolated from both skeletally immature (1 year-old) and mature animals (8 year-old). Clonal and polyclonal cell lines (at least 5 of each for each age) were cultured in the presence of 10% FCS, 1ng/ml TGFb-1 & 2.5 ng/ml FGF-2. Cells were seeded at low density and passaged weekly. Results. Chondroprogenitors from both animals reached over 40 (mean) PD in 50 days with growth remaining linear. Little difference in growth rates was observed between clonal and polyclonal cell lines. For the mature animal, 96% of cells were BrDU positive at 22 PD whilst none of cells were (senescence associated) β-gal positive. At 44 PD, 88% of cells were BrDU positive and just 15% of cells were β-gal positive. Three clonal and three polyclonal cell lines from the mature animal were cultured beyond the 50-day time point. At 120 days, cells reached up to 90 PD with the same pattern of linear growth observed. When tested at 70 PD, 79% of these cells were still BrDU positive (range 55–97%) and just 11% of cells were β-gal positive (range 2–22%). Furthermore, little difference in cell morphology was observed throughout this extended expansion. At 70 PD, we found that both clonal and polyclonal cell lines in monolayer culture were still expressing the chondrogenic transcription factor; Sox-9. Expression of genes for aggrecan and collagen type II was also detected in cells that were chondrogenically induced for 72 hours. Discussion & Conclusions. We have demonstrated for the first time the extended expansion of cells derived from articular cartilage that retain chondrogenic potency. These equine cells have since been cultured to over 100 PD without evidence of senescence. One hundred PD is equivalent to 1 × 1030 cells originating from a single cell. We have previously reported that the human equivalents of these cells surpass MSCs in doubling capacity but senesce at approximately 60 PD6. The properties of these equine chondroprogenitor cells make them ideal candidates for allogeneic cell therapy for articular cartilage repair. In addition, the data suggest the reclassification of these cells from progenitor cells to stem cells


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1278 - 1284
1 Sep 2005
Irie T Aizawa T Kokubun S

Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell kinetics of chondrocytes as defined by the numbers of proliferating and dying cells. The growth plates of normal rabbits and animals castrated at eight weeks of age were obtained at 10, 15, 20 and 25 weeks of age.

Our study suggested that castration led to an increase in apoptosis and a decrease in the proliferation of chondrocytes in the growth plate. In addition, the number of chondrocytes in the castrated rabbits was less than that of normal animals of the same age.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1402 - 1406
1 Oct 2007
Tayton K

Although much has been published on the causes of slipped upper femoral epiphysis and the results of treatment, little attention has been given to the mechanism of the slip. This study presents the results of the analysis of 13 adolescent femora, and the attempts to reproduce the radiological appearances of a typical slip. The mean age of the skeletons was 13 years (11 to 15). It was found that the internal bony architecture in the zone of the growth plate was such that a slip of the epiphysis on the metaphysis (in the normal meaning of the word slip) could not take place, largely relating to the presence of a tubercle of bone projecting down from the epiphysis. The only way that the appearance of a typical slipped upper femoral epiphysis could be reproduced was by rotating the epiphysis posteromedially on the metaphysis. The presence and size of this peg-like tubercle was shown radiologically by CT scanning in one pair of intact adolescent femurs.