Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 2 - 2
1 Aug 2013
Gupta S Maclean M Anderson J MacGregor S Meek R Grant M
Full Access

Infection rates following arthroplasty surgery are between 1–4%, with higher rates in revision surgery. The associated costs of treating infected arthroplasty cases are considerable, with significantly worse functional outcomes reported. New methods of infection prevention are required. HINS-light is a novel blue light inactivation technology which kills bacteria through a photodynamic process. The aim of this study was to investigate the efficacy of HINS-light for the inactivation of bacteria isolated from infected arthoplasty cases. Specimens from hip and knee arthroplasty infections are routinely collected to identify causative organisms. This study tested a range of these isolates for sensitivity to HINS-light. During testing, bacterial suspensions were exposed to increasing doses of HINS-light of (123mW/cm. 2. irradiance). Non-light exposed control samples were also set-up. Bacterial samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation was achieved for all Gram positive and negative microorganisms. More than a 4-log reduction in Staphylococcus epidermidis and Staphylococcus aureus populations were achieved after exposure to HINS-light for doses of 48 and 55 J/cm. 2. , respectively. Current investigations using Escherichia coli and Klebsiella pneumoniae show that gram-negative organisms are also susceptible, though higher doses are required. This study has demonstrated that HINS-light successfully inactivated all clinical isolates from infected arthroplasty cases. As HINS-light utilises visible-light wavelengths it can be safely used in the presence of patients and staff. This unique feature could lead to possible applications such as use as an infection prevention tool during surgery and post-operative dressing changes


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 283 - 288
1 Feb 2015
Gupta S Maclean M Anderson JG MacGregor SJ Meek RMD Grant MH

High-intensity narrow-spectrum (HINS) light is a novel violet-blue light inactivation technology which kills bacteria through a photodynamic process, and has been shown to have bactericidal activity against a wide range of species. Specimens from patients with infected hip and knee arthroplasties were collected over a one-year period (1 May 2009 to 30 April 2010). A range of these microbial isolates were tested for sensitivity to HINS-light. During testing, suspensions of the pathogens were exposed to increasing doses of HINS-light (of 123mW/cm2 irradiance). Non-light exposed control samples were also used. The samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation (greater than 4-log10 reduction) was achieved for all of the isolates. The typical inactivation curve showed a slow initial reaction followed by a rapid period of inactivation. The doses of HINS-light required ranged between 118 and 2214 J/cm2. Gram-positive bacteria were generally found to be more susceptible than Gram-negative.

As HINS-light uses visible wavelengths, it can be safely used in the presence of patients and staff. This unique feature could lead to its possible use in the prevention of infection during surgery and post-operative dressing changes.

Cite this article: Bone Joint J 2015;97-B:283–8.