Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 74 - 74
1 Apr 2019
Giles J Broden C Tempelaere C Rodriguez-Y-Baena F
Full Access

PURPOSE. To validate the efficacy and accuracy of a novel patient specific guide (PSG) and instrumentation system that enables minimally invasive (MI) short stemmed total shoulder arthroplasty (TSA). MATERIALS AND METHODS. Using Amirthanayagam et al.'s (2017) MI posterior approach reduces incision size and eliminates subscapular transection; however, it precludes glenohumeral dislocation and the use of traditional PSGs and instruments. Therefore, we developed a PSG that guides trans-glenohumeral drilling which simultaneously creates a humeral guide tunnel/working channel and glenoid guide hole by locking the bones together in a pre-operatively planned pose and drilling using a c-shaped drill guide (Figure 1). To implant an Affinis Short TSA system (Mathys GmbH), novel MI instruments were developed (Figure 2) for: humeral head resection, glenoid reaming, glenoid peg hole drilling, impaction of cruciform shaped humeral bone compactors, and impaction of a short humeral stem and ceramic head. The full MI procedure and instrument system was evaluated in six cadaveric shoulders with osteoarthritis. Accuracy was assessed throughout the procedure: 1) PSG physical registration accuracy, 2) guide hole accuracy, 3) implant placement accuracy. These conditions were assessed using an Optotrak Certus tracking camera (NDI, Waterloo, CA) with comparisons made to the pre-operative plan using a registration process (Besl and McKay, 1992). RESULTS. 3D translational accuracy of PSG physical registration was: humeral PSG- 2.2 ± 1.1 mm and scapula PSG- 2.5 ± 0.7 mm. The humeral and scapular guide holes had angular accuracies of 6.4 ± 3.2° and 8.1 ± 5.1°, respectively; while the guide hole positional accuracies on the articular surfaces (which will control bone preparation translational accuracy) were 2.9 ± 1.2 mm and 2.8 ± 1.3 mm. Final implantation accuracy in translation was 2.9 ± 3.0 mm and 5.7–6.8 ± 2.2–4.0° across the implants’ three rotations for the humerus and in translation was 2.8 ± 1.5 mm and 2.3–4.3 ± 2.2–4.4° across the implants’ three rotations for the scapula (Figure 3). DISCUSSION. The overall implantation accuracy was similar to results of previously reported open, unassisted TSA (3.4 mm & 7–12°, Hendel et al., 2012, Nguyen et al., 2009). Analysis of the positional PSG registration accuracy very closely mirrors the final implantation accuracy (humerus:2.2 mm vs 2.9 mm, and scapula:2.2 mm vs 2.8mm), thus, this is likely the primary predictor of implantation accuracy. Furthermore, the greatest component of PSG registration error was mediolateral translation (i.e. along the guiding axis) and thus should not affect guide hole drilling accuracy. The drilled guide hole positional and angular error was low for the humerus (2.9 mm and 6.4°) but somewhat higher in rotation (8.1°) for the glenoid which may indicate a slight shift in the PSG prior to guide hole drilling due to the weight of the arm applied when the PSGs are locked together. In conclusion, this work has detailed the step-by-step surgical errors associated with the developed system and demonstrated that it achieves similar accuracy to open, unassisted TSA, while avoiding complications related to muscular transection and dislocation. Therefore, we believe this technique is worthy of clinical investigation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 20 - 20
1 Dec 2016
Amar E Dillman D Smith B Coady C Wong I
Full Access

Background: The results of arthroscopic anterior labral (Bankart) repair have been shown to have high failure rate in patients with significant glenoid bone loss. Several reconstruction procedures using bone graft have been described to overcome the bone loss, including autogenous coracoid transfer to the anterior glenoid (Latarjet procedure) as well as iliac crest autograft and tibial allografts. In recent years, trends toward minimally invasive shoulder surgery along with improvements in technology and technique have led surgeons to expand the application of arthroscopic treatment. Purpose: This study aims to perform a retrospective analysis of prospectively collected data to evaluate the clinical and radiological follow up of patient who underwent anatomic glenoid reconstruction using distal tibia allograft for the treatment of shoulder instability with glenoid bone loss at 1-year post operation time point. Between December 2011 and January 2015, 55 patients underwent arthroscopic stabilisation of the shoulder by means of capsule-labral reattachment to glenoid ream and bony augmentation of glenoid bone loss with distal tibial allograft for recurrent instability of the shoulder. Preoperative and postoperative evaluation included general assessment by the western Ontario shoulder instability index (WOSI) questionnaire, preoperative and postoperative radiographs and CT scans. Fifty-five patients have been evaluated with mean age of 29.73 years at time of the index operation. There were 40 males (mean age of 29.66) and 15 female (mean age of 29.93). Minimum follow up time was 12 months. The following adverse effects were recorded: none suffered from recurrent dislocation, 2 patients suffered from bone resorption but without overt instability, 1 patient had malunion due to screw fracture, None of the patients had nonunion. The mean pre-operative WOSI score was 36.54 and the mean postoperative WOSI score was 61.0. Arthroscopic stabilisation of the shoulder with distal tibia allograft augmentation demonstrates promising result at 1year follow up


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 164 - 164
1 Dec 2013
Roche C Diep P Grey S Flurin PH Zuckerman J Wright T
Full Access

Introduction. Posterior glenoid wear is common in glenohumeral osteoarthritis. Tightening of the subscapularis causes posterior humeral head subluxation and a posterior load concentration on the glenoid. The reduced contact area causes glenoid wear and potentially posterior instability. To correct posterior wear and restore glenoid version, surgeons may eccentrically ream the anterior glenoid to re-center the humeral head. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids. This study quantifies the change in rotator cuff muscle length (relative to a nonworn/normal shoulder) resulting from three sizes of posterior glenoid defects using 2 different glenoids/reaming methods: 1) eccentric reaming using a standard (nonaugmented) glenoid and 2) off-axis reaming using an 8, 12, and 16° posterior augment glenoid. Methods. A 3-D computer model was developed in Unigraphics (Siemens, Inc) to simulate internal/external rotation and quantify rotator cuff muscle length when correcting glenoid version in three sizes of posterior glenoid defects using posterior augmented and non-augmented glenoid implants. Each glenoid was implanted in a 3-D digitized scapula and humerus (Pacific Research, Inc); 3 sizes (small, medium, and large) of posterior glenoid defects were created in the scapula by posteriorly shifting the humeral head and medially translating the humeral head into the scapula in 1.5 mm increments. Five muscles were simulated as three lines from origin to insertion except for the subscapularis which was wrapped. After simulated implantation in each size glenoid defect, the humerus was internally/externally rotated from 0 to 40° with the humerus at the side. Muscle lengths were measured as the average length of the three lines simulating each muscle at each degree of rotation and compared to that at the corresponding arm position for the normal shoulder without defect to quantify the percentage change in muscle length for each configuration. Results. As depicted in Figures 1–3, muscle shortening was observed for each muscle for each size defect. For each size uncorrected defect, the subscapularis was observed to wrap around the anterior glenoid rim during internal rotation and with the arm at neutral; both eccentric successfully re-centered the humeral head and eliminate subscapularis wrapping around the anterior glenoid rim. However, eccentric reaming was also found to medialize the joint line and resulted in approximately 1.5, 2.5, and 3.5% additional muscle shortening for each muscle relative to the augmented glenoid in each size defect, respectively. Discussion and Conclusions. This study demonstrates that posterior glenoid wear medializes the joint line and results in rotator cuff muscle shortening. Augmented glenoids offer the potential to better restore the joint line and minimize muscle shortening, particularly when used in large glenoid defects. Future work should investigate the clinical significance of 1.5–3.5% of muscle shortening and evaluate the functional impact of subscapularis wrapping around the anterior glenoid rim


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 38 - 38
1 Jun 2012
Biase CFD Giorgio GD Postacchini R
Full Access

Background. One of the main concern about reverse shoulder arthoplasty for the treatment of rotator cuff deficiency is scapular notching that is still an unsolved issue for this particular prosthesis. The purpose of this multicentric retrospective study is to compare two different concept of reverse prosthesis, one with a concentric glenoshere and the other one with a new eccentric glenoshere design that aim to minimize scapular notching. Methods. From 2004 to 2009 67 patients were treated with a SMR reverse shoulder prosthesis (LIMA) with either concentric (figure 2) or eccentric glenosphere (figure 1). We selected for the study patients with criteria as much homogeneous as possible by the age and pathology. We then included for the study 25 patients (Group 1) with a concentric glenosphere and 21 (Group 2) with a eccentric glenosphere. All baseplates of concentric glenospheres were implanted with the most inferior aspect of baseplate that matched with the inferior glenoid ream, so that the glenosphere extended 4 mm beyond the glenoid inferiorly in order to minimize scapular notching. Every patient were followed clinically (Constant and Murley Score [C.S.] and Simple Shuolder test [S.S.T.]) and radiographically (notching, loosening and mechanical failure) with a minimum follow-up of 24 months. We also evaluated at the final follow-up psna (prosthesis-scapular neck angle), pgrd (peg glenoid rim distance) and DBSNG (distance between scapular neck and glenosfere). Results. At two years of follow up R.O.M. increased significantly in both groups especially in those with a eccentric glenosphere. Notably in patients with an eccentric glenosphere elevation improved from 66° to 148° and abduction from 60° to 115° while in those with a concentric glenosphere improved from 78° to 122° and 71° to 98° respectively for elevation and abduction. Outcomes for external-rotation and internal-rotation were very similar in both groups. 14 (56%) patients among those with a concentric glenosphere had scapular notching while we didn't have any notch in those with eccentric glenosphere even though we didn't find any significant different between the two groups in term of clinical outcomes and patient's satisfaction. The average C.S. increased from 38% to 69% in those with concentric SMR and from 30% to 74% in the other group. At the final follow-up PSNA, DBSNG and PGRD were respectively 88°, 3,2mm and 18,2 mm in group 1, while they were 92°, 4,3 mm and 21,2 mm in the group 2. Conclusions. Putting concentric glenosphere more inferiorly reduce the incidence of scapular notching but it doesn't solve the problem whereas, at medium follow-up, the new eccentric design seems to solved completely this issue. This study sustains PSNA, DBSNG, PGRD as reliable measures to predict scapular notching. Besides eccentric SMR glenosphere seems to increase R.O.M. mostly in flexion, abduction and adduction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 536 - 536
1 Dec 2013
Simon P Virani N Diaz M Teusink M Santoni B Frankle M
Full Access

Introduction:. Subchondral bone density (SBD) distribution is an important parameter regarding that may be important when considering implant stability. This parameter is a reflection of the loading experienced by the joint throughout the lifetime and may be useful in pre-surgical planning and implant design. Clinically, the question of the glenoid surface preparation for TSA/RSA remains controversial, despite numerous published studies on glenoid bone morphology. To address this question, there exists a need to develop a 3D quantitative method capable of analyzing the complex glenoid bone morphology at different depths from the surface. Computed tomographic osteoabsoptiomery (CT-OAM) evaluates SBD based on the Housfield Unit (HU) value of each pixel. In this pilot study, we aimed to analyze SBD distribution of the glenoid at different depths by means of CT-OAM in male TSA subjects. Materials and Methods:. A study group of twenty male TSA patients (61–69y.o) were included in this study. Each subject obtained a pre-operative CT scan following a standardized protocol on the same CT scanner (1.25 mm slice thickness). Resultant DICOM 2D images were processed in custom-written program (VC++) and the surface of every glenoid was manually traced from the axial slices. Care was taken during the manual tracing process to exclude osteophytes and cyst formations from the resultant surface. Values of HU at every selected pixel on the surface of the glenoid were recorded. Subsequently, the layer of pixels at a 0.5 mm distance from the previous surface was virtually scraped and the HU values of new layer of pixels were recorded. This routine was repeated up to a depth of 5 mm from the glenoid surface, taking measurements on 11 virtual 3D surfaces with a thickness of 0.5 mm. Mean SBD distribution was reported for each layer and differences were compared using ANOVA and Fisher's post-hoc test. Results:. Apparent differences in mean SBD distribution were identified at every measured depth from the glenoid surface (Fig. 1). Significant differences (Tab.1) were identified between the middle range of studied surfaces (2.5–4.5 mm) when compared to the superficial (0–1.5 mm, p < 0.0001) and deep layers (5 mm, p < 0.0001). The maximum mean value of HU (1635.9 ± 35.5) was measured at 3.5 mm depth and the minimum value of HU was measured on the surface of the glenoid (1445.8 ± 31.3). Discussion:. The stability of the glenoid component in TSA prostheses is highly dependent on the SBD distribution. Controversy among orthopaedic surgeons exists regarding the depth of reaming required to prepare an arthritic glenoid. Extensive reaming may lead to the violation of the support provided by the denser subchondral bone; however, optimal match between the bone and glenoid component undersurface is highly desirable. This study demonstrates that the density of the bone is sustained up to a depth of approximately 4.5 mm from the glenoid surface, suggesting that an increased reaming may be favorable without compromising bony support