The prevalence of symptomatic osteoarthritis (OA) in the knee is 11–11% compared to 3.4–4.4% in the ankle. In addition to this, 70% of ankle arthritis is post-traumatic while the vast majority of knee arthritis is primary OA. Several reports have previously implicated biochemical differences in extracellular matrix composition between these joint cartilages; however, it is unknown whether there is an inherent difference in their transcriptome and how this might affect their respective functionality under load, inflammatory environment etc. Therefore, we have analysed the transcriptome of ankle and knee cartilage chondrocytes to determine whether this could account for the lower prevalence and altered aetiology of ankle OA. Human full-depth articular cartilage was taken from the talar domes (n=5) and the femoral condyles (n=5) following surgical amputation. RNA was extracted and next generation sequencing (NGS) performed using the NextSeq®500 system. Statistical analysis was performed to identify differentially regulated genes (p adj < 0.05). Data was analysed using Integrated Pathway Analysis software and genes of interest validated by quantitative PCR.Introduction
Methods
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.