header advert
Results 1 - 20 of 69
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 98 - 98
1 Feb 2020
Conteduca F Conteduca R Marega R
Full Access

The Step Holter is a software and mobile application that can be used to easily study gait analysis. The application can be downloaded for free on the App Store and Google Play Store for iOS and Android devices. The software can detect with an easy calibration the three planes to detect the movement of the gait. Before proceeding with the calibration, the smartphone can be placed and fixed with a band or stowed into a long sock with its top edge at the height of the joint line, in the medial side of the tibia. The calibration consists in bending the knee about 20 to 30 degrees and then making a rotation movement, leaving the heel fixed to the ground as a rotation fulcrum. After calibration, the program records data related to lateral flexion, rotation, and bending of the leg. This data can be viewed directly from the smartphone screen or transmitted via a web link to the Step Holter web page . www.stepholter.com. by scanning a personal QR code. The web page allows the users to monitor the test during its execution or view data for tests done previously. By pressing the play button, it is possible to see a simulation of the patient's leg and its movement. With the analyze button, the program is capable of calculating the swing and stance phase of every single step, providing a plot with time and percentages. Finally, with the Get Excel button, test data can be conveniently exported for more in-depth research. The advantage of this application is not only to reduce the costs of a machine for the study of gait analysis but also being able to perform tests quickly, without expensive hardware or software and be used in specific spaces, without specialized personnel. Furthermore, the application can collect important data concerning rotation that cannot be highlighted with the classic gait analysis. The versatility of a smartphone allows tests to be carried out not only during walking but also by climbing or descending stairs or sitting down or getting up from a chair. This software offers the possibility to easily study any kind of patients; Older patients, reluctant to leave their homes for a gait analysis can be tested at home or during an office control visit. Step Holter could be one small step for patients, one giant leap for gait study simplicity. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 65 - 65
1 Mar 2017
Vasarhelyi E Petis S Lanting B Howard J
Full Access

Introduction. Total hip arthroplasty (THA) is the most effective treatment modality for severe arthritis of the hip. Patients report excellent clinical and functional outcomes following THA, including subjective improvement in gait mechanics. However, few studies in the literature have outlined the impact of THA, as well as surgical approach, on gait kinetics and kinematics. Purpose. The purpose of this study was to determine the impact of surgical approach for THA on quantitative gait analysis. Methods. Thirty patients undergoing THA for primary osteoarthritis of the hip were assigned to one of three surgical approaches (10 anterior, 10 posterior, and 10 lateral). A single surgeon performed each individual approach. Each patient received standardized implants at the time of surgery (cementless stem and acetabular component, cobalt chrome femoral head, highly cross-linked liner). Patients underwent 3D gait analysis pre-operatively, and at 6- and 12-weeks following the procedure. At each time point, temporal gait parameters, kinetics, and kinematics were compared. Statistical analysis was performed using one-way analysis of variance. Results. All three groups were similar with respect to age (p=0.27), body mass index (p=0.16), and the Charlson Comorbidity Index (p=0.66). Temporal parameters including step length, stride length, gait velocity, and percent stance and swing phase were similar between the groups at all time points. The lateral cohort had higher pelvic tilt during stance on the affected leg than the anterior cohort at 6-weeks (p=0.033). Affected leg ipsilateral trunk lean during stance was higher in the lateral group at 6-weeks (p=0.006) and 12-weeks (p=0.037) compared to the other cohorts. The anterior and posterior groups demonstrated an increased external rotation moment at 6-weeks (p=0.001) and 12-weeks (p=0.005) compared to the lateral group. Discussion. Although temporal parameters were similar across all groups, some differences in gait kinematics and kinetics exist following THA using different surgical approaches. However, the clinical relevance based on the small magnitude of the differences remains in question


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 100 - 100
1 Nov 2016
Petis S Vasarhelyi E Lanting B Jones I Birmingham T Howard J
Full Access

Total hip arthroplasty (THA) is the most effective treatment modality for severe arthritis of the hip. Patients report excellent clinical and functional outcomes following THA, including subjective improvement in gait mechanics. However, few studies in the literature have outlined the impact of surgical approach on gait kinetics and kinematics. The purpose of this study was to determine the impact of surgical approach for THA on quantitative gait analysis. Thirty patients undergoing THA for primary osteoarthritis of the hip were assigned to one of three surgical approaches (10 anterior, 10 posterior, and 10 lateral). A single surgeon performed each individual approach. Each patient received standardised implants at the time of surgery (cementless stem and acetabular component, cobalt chrome femoral head, highly cross-linked liner). Patients underwent 3D gait analysis pre-operatively, and at 6- and 12-weeks following the procedure. At each time point, temporal gait parameters, kinetics, and kinematics were compared. Statistical analysis was performed using one-way analysis of variance. All three groups were similar with respect to age (p=0.27), body mass index (p=0.16), and the Charlson Comorbidity Index (p=0.66). Temporal parameters including step length, stride length, gait velocity, and percent stance and swing phase were similar between the groups at all time points. The lateral cohort had higher pelvic tilt during stance on the affected leg than the anterior cohort at 6-weeks (p=0.033). Affected leg ipsilateral trunk lean during stance was higher in the lateral group at 6-weeks (p=0.006) and 12-weeks (p=0.037) compared to the other cohorts. The anterior and posterior groups demonstrated an increased external rotation moment at 6-weeks (p=0.001) and 12-weeks (p=0.005) compared to the lateral group. Although temporal parameters were similar across all groups, some differences in gait kinematics and kinetics exist following THA using different surgical approaches. However, the clinical relevance based on the small magnitude of the differences remains in question


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 61 - 61
1 Apr 2019
Micera G Moroni A Orsini R Sinapi F Mosca S Acri F Fabbri D Miscione MT
Full Access

Background. The aim of this study is to analysis the ability of these patients, treated with MOMHR, to resume sport activities by gait analysis and clinical evaluations. Metal on metal hip resurfacing (MOMHR) is indicated to treat symptomatic hip osteoarthritis in young active patients. These patients require a high level of function and desire to resume sport activities after surgery. Study Design & Methods. 30 consecutive male patients playing high impact sports with unilateral hip osteoarthritis and normal contralateral hip were included in the study, they were treated with MOMHR by the same surgeon. No patients were lost to follow. The mean age at operation was 39.1 years (range 31 to 46). Primary diagnosis was osteoarthritis. OHS, HHS, UCLA activity score were completed at pre-operative time, six months and one year after surgery. Functionally, gait analysis was performed in all patients 6 months and one year after surgery. A stereophotogrammetric system (Smart-DX, BTS, Milano, Italy, 10 cameras, 250Hz) and two platforms (9286BA Kistler Instrumente AG, Switzerland) were used. Cluster of 4 markers were attached on the skin of each bone segment, a number of anatomical landmarks were calibrated and segment anatomical frames defined, markers were positioned by the same operator. Walking, running and squat jump were analyzed and strength and range of movement of the hips and knees were calculated. Results. At follow-up times the survival rate for the whole cohort was 100%. The mean pre-op OHS was 28.1 points (range 15.0 to 38.0), at 6 months after surgery was 44.5 points (range 44 to 48), at one year after surgery was 47.9 points (range 45 to 48). The mean pre-op HHS was 54.7 points (range 33.1 to 73.4), at 6 months after surgery was 96.7 points (range 93.4 to 100), at one year after surgery was 99.7 points (range 95.7 to 100). The mean pre-op UCLA activity score was 2.7 (range 2 to 4), at 6 months after surgery was 7.4 (range 5 to 10), at one year after surgery was 8.6 (range 7 to 10). At 6 months after surgery, patients showed a reduction of the differences between the operated and the contralateral side during walking, running and squat jumping. (p<0.01). One year after the operation there were no differences. At 3 months after surgery the mean hip flexion extension range of motion was in the normal hips 41±1.7 and in the operated hips 37.3±2.1; at 6 months after surgery the mean hip flexion extension range of motion was in the normal hips 45.4±1.8 and in the operated hips 42.0±1.7; At 1 year after surgery the hip flexion extension range of motion was in the normal hips 42.9±1.7 and in the operated hips 45.5±1.4. (p=0.001). Conclusions. Our gait analysis study shows that the biomechanical function of the operated hip is completely recovered 1 year after MOMHR operation. As a consequence sport activities can be successfully resumed. MOMHR is a good choice for young and active patients affected by hip osteoarthritis requiring a high level of activity


Background. There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty. Methods. Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups. Results. The mean follow up duration of both group was 8.1 years (mechanical method) and 8.0 years (kinematic method). Clinical outcome between two groups showed no significant difference in ROM, HSS, WOMAC, KSS pain score at last follow up. Varus and valgus laxity assessments showed no significant inter-group difference. We could not find any significant difference in mechanical alignment of the lower limb and perioperative complicatoin. In gait analysis, no significant spatiotemporal, kinematic or kinetic parameter differences including knee varus moment (mechanical=0.33, kinematic=0.16 P0.5) and knee varus force (mechanical=0.34, kinematic=0.37 P0.5) were observed between mechanical and kinematic groups. Conclusions. The results of this study show that mechanical and kinematic alignment method provide comparable clinical and radiological outcomes after robotic total knee arthroplasty in average 8 years follow-up. And no functional difference were found between two knee alignment methods during walking


Background. There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty. Methods. Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups. Results. The mean follow up duration of both groups was 8.1 years (mechanical method) and 8.0 years (kinematic method). Clinical outcome between two groups showed no significant difference in ROM, HSS, WOMAC, KSS pain score at last follow up. Varus and valgus laxity assessments showed no significant inter-group difference. We could not find any significant difference in mechanical alignment of the lower limb and perioperative complicatoin. In gait analysis, no significant spatiotemporal, kinematic or kinetic parameter differences including knee varus moment (mechanical=0.33, kinematic=0.16 P0.5) and knee varus force (mechanical=0.34, kinematic=0.37 P0.5) were observed between mechanical and kinematic groups. Conclusions. The results of this study show that mechanical and kinematic alignment method provide comparable clinical and radiological outcomes after robotic total knee arthroplasty in average 8 years follow-up. And no functional differences were found between two knee alignment methods during walking


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 136 - 136
1 Jan 2016
Laende E Richardson G Biddulph M Dunbar M
Full Access

Introduction. Surgical techniques for implant alignment in total knee arthroplasty (TKA) is a expanding field as manufacturers introduce patient-specific cutting blocks derived from 3D reconstructions of pre-operative imaging, commonly MRI or CT. The patient-specific OtisMed system uses a detailed MRI scan of the knee for 3D reconstruction to estimate the kinematic axis, dictating the cutting planes in the custom-fit cutting blocks machined for each patient. The resulting planned alignment can vary greatly from a neutral mechanical axis. The purpose of this study was to evaluate the early fixation of components in subjects randomized to receive shape match derived kinematic alignment or conventional alignment using computer navigation. A subset of subjects were evaluated with gait analysis. Methods. Fifty-one patients were randomized to receive a cruciate retaining cemented total knees (Triathlon, Stryker) using computer navigation aiming for neutral mechanical axis (standard of care) or patient-specific cutting blocks (OtisMed custom-fit blocks, Stryker). Pre-operatively, all subjects had MRI scans for cutting block construction to maintain blinding. RSA exams and health outcome questionnaires were performed post-operatively at 6 week, 3, 6, and 12 month follow-ups. A subset (9 subjects) of the patient-specific group underwent gait analysis (Optotrak TM 3020, AMTI force platforms) one-year post-TKA, capturing three dimensional (3D) knee joint angles and kinematics. Principal component analysis (PCA) was applied to the 3D gait angles and moments of the patient-specific group, a case-matched control group, and 60 previously collected asymptomatic subjects. Results. Five MRI scans for surgical planning were not useable due to motion artifacts, with 2 successfully rescanned. Ligament releases were performed in 62% of navigation cases and 32% of patient-specific cases. One patient-specific case was revised for failure of the cruciate ligament, resulting in a polyethylene liner exchange for a thicker, cruciate substituting insert. Implant migration at 1 year was 0.40±0.25 mm for the patient-specific group and 0.37±0.20 mm for the navigation group (maximum total point motions; t-test P=0.65). EQ-5D scores, Oxford Knee scores, satisfaction, pain, and range of motion were not different between groups at any follow-up to 1 year, including the polyethylene liner exchange case. The gait analysis showed that there were no statistical differences between groups. PCA captured a lower early stance phase flexion moment magnitude in the patient-specific group than the computer navigated recipients, bringing patterns further away from asymptomatic characteristics (flexion moment PC2, P=0.02). Conclusions. Implant migration was not different between groups at 1 year despite differences in implant alignment methods. Subject function and satisfaction were also not different between groups, despite significantly fewer ligament releases in the patient-specific group. However, gait analysis of a subgroup has not shown an improvement towards restoring asymptotic gait. It should be acknowledged that the production of patient-specific cutting blocks may not be possible for all patients due to the MRI scanning requirements. Continued evaluation with RSA to 2 years will be performed to monitor these subjects over the longer term


Introduction. In prosthetic knee surgery, the axis of the lower limb is often determined only by static radiographic analysis. However, it is relevant to determine if this axis varies during walking, as this may alter the stresses on the implants. The aim of this study was to determine whether pre-operative measurement of the mechanical femorotibial axis (mFTA) varies between static and dynamic analysis in isolated medial femorotibial osteoarthritis. Methods. Twenty patients scheduled for robotic-assisted medial unicompartmental knee arthroplasty (UKA) were included in this prospective study. We compared three measurements of the coronal femorotibial axis: in a static and weightbearing position (on long leg radiographs), in a dynamic but non-weightbearing position (intra-operative acquisition during robotic-assisted UKA), and in a dynamic and weightbearing position (during walking by a gait analysis). Results. There was no significant difference in the mFTA between radiological (173.9 ± 3.3°), robotic (174.4 ± 3.4°), and gait analysis (172.9 ± 5.1°) measurements (p < 0.05). Conclusion. There is no significant variation in varus between lying, standing, and while walking in patients who are candidates for medial UKA. This study also allows us to validate the accuracy of the robotic system in varus estimation, and to rely on intra-operative planning as it also reflects the dynamic knee under load


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 183 - 183
1 Mar 2013
Grzesiak A Jolles B Eudier A Dejnabadi H Voracek C Pichonnaz C Aminian K Martin E
Full Access

INTRODUCTION. Mobile-bearing knee prostheses have been designed in order to provide less constrained knee kinematics compared to fixed-bearing prosthesis. Currently, there is no evidence to confirm the superiority of either of the two implants with regard to walking performances. It has been shown that subjective outcome scores correlate poorly with real walking performance and it has been recommended to obtain an additional assessment of walking ability with objective gait analysis. OBJECTIVES. We assessed recovery after total knee arthroplasty (TKA) with mobile- and fixed-bearing between patients during the first postoperative year, and at 5 years follow-up, using a new objective method to measure gait parameters in real life conditions. METHODS. 56 patients with mobile- and fixed-bearing of the same design were included in this randomised controlled double-blinded study and evaluated pre- and post-operatively at 6 weeks, 3 months, 6 months 1 year and 5 years. At each visit a WOMAC and Knee Society Score were calculated and each participant completed an EQ-5D questionnaire. To assess the patients' gait five miniature angular rate sensors mounted respectively on the sacrum and each shank and thigh measured lower limb movement and rotation. The patients walked 30 metres on a flat surface and gait parameters were recorded with a small ambulatory device in order to carry out an objective gait analysis. RESULTS. Objective recovery was strongly correlated with patients' age. When the whole population was considered, there was no significant difference between groups at any time in objective gait parameters. After separating the population according to their age (less than 71 years old, compared to those of more than 71 years old) a secondary analysis showed that the bearing type can lead to opposite results in different age groups. At five years follow-up, most of the recorded gait parameters (stride length, knee max rotation speed, shank and thigh range of motion, and limp) showed better results for mobile bearing in younger patients, while better gait performances were found systematically with fixed-bearing TKA in older patients. CONCLUSION. To our knowledge, this is the first study where similarly designed posterior-stabilised knee replacements with fixed- and mobile-bearing have been compared with gait analysis in real-life conditions. We observed systematically differences between mobile and fixed bearing groups, which are confirmed by multivariate analysis. Our results suggest that older patients might not benefit from a mobile bearing TKA and that extended age controlled study should be performed to identify an age, above which fixed bearing should not be the recommended choice. Before choosing the bearing type, surgeons should take into account the age of the patient


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 26 - 26
1 Feb 2013
Brunton L Bolink S van Laarhoven S Lipperts M Grimm B Heyligers I Blom A
Full Access

Accelerometer based gait analysis (AGA) is a potential alternative to the more commonly used skin marker based optical motion analysis system(OMAS). The use of gyroscopes in conjunction with accelerometers (i.e. inertial sensors), enables the assessment of position and angular movements of body segments and provides ambulatory kinematic characterisation of gait. We investigated commonly used gait parameters and also a novel parameter, Pelvic obliquity (PO) and whether they can be used as a parameter of physical function and correlate with classic clinical outcome scores. Gait was studied in healthy subjects (n=20), in patients with end stage hip OA (n=20) and in patients with end stage knee OA (n=20). Subjects walked 20 metres in an indoor environment along a straight flat corridor at their own preferred speed. A 3D inertial sensor was positioned centrally between the posterior superior iliac spines (PSIS) overlying S1. Comparing gait parameters of end stage hip OA patients with an age and gender matched healthy control group, significantly lower walking speed, longer step duration and shorter step length was observed. After correcting for walking speed between groups, significantly less average range of motion of PO (RoM. po. ) was observed for patients with end stage hip OA compared to healthy subjects and patients with end stage knee OA. IGA allows objective assessment of physical function for everyday clinical practice and allows assessment of functional parameters beyond time only. IGA measures another dimension of physical function and could be used supplementary to monitor recovery of OA patients after TJR


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 88 - 88
1 Apr 2019
Smulders K Rensch PV Wymenga A Heesterbeek P Groen B
Full Access

Background

The cruciate ligaments are important structures for biomechanical stability of the knee. For total knee arthroplasty (TKA), understanding of the exact function of the (PCL) and anterior (ACL) cruciate ligament during walking is important in the light of recent designs of bicruciate TKAs. However, studies evaluating in vivo function of the PCL during daily activities such as walking are scarce. We aimed to assess the role of the PCL during gait by measuring kinematics and kinetics of individuals with PCL deficiency and compare them with individuals with ACL deficiency and healthy young adults.

Methods

Individuals with unilateral PCL deficiency (PCLD; n=9), unilateral ACL deficiency (n=10) and healthy young adults performed (n=10) 10 walk trials (5 for each leg) in which they walked over a force platform. Motion analysis (Vicon Motion Capture System) was used to calculate joint angles and internal moments around the knee, hip and ankle in the sagittal plane. Joint angles and moments of the injured knee (in PCLD and ACLD) or left knee (in HYA) were compared between groups at weight acceptance, mid-stance and push-off phases (see Fig. 1). Clinical assessment included passive knee laxity (Kneelax) for anterior (in 20–30° knee flexion) and posterior tibia translation (in 70–90° knee flexion) and Lysholm questionnaires.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 18 - 18
1 Jan 2013
Wiik A Tankard S Lewis A Krishnan S Amis A Cobb J
Full Access

Background

High functional aspirations and an active ageing population equate to a growing number of patients awaiting hip arthroplasty demanding superior biomechanical function. The purpose of this study was to compare the biomechanics of top walking speed between two commonly used hip arthroplasty procedures to determine if a performance advantage existed.

Methods

A retrospective comparative study was performed using sixty-seven subjects, twenty-two subjects in both hip resurfacing and total hip arthroplasty groups along with twenty-three healthy controls. All arthroplasty subjects were recruited based on high psychometric scoring and had been performed through a posterior approach, and had been discharged from follow-up. On an instrumented treadmill each subject was measured by a researcher blinded to which procedure that patient had undergone. After a six minute acclimatization period, the speed was increased incrementally until top walking performance had been attained. At all increments, ground reaction forces and temporospatial measurements were collected.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 60 - 60
1 Mar 2013
Firth G Passmore E Sangeux M Graham H
Full Access

Purpose of Study

In children with spastic diplegia, surgery for equinus has a high incidence of both over and under correction. We wished to determine if conservative (mainly Zone 1) surgery for equinus gait, in the context of multilevel surgery, could result in the avoidance of calcaneus and crouch gait as well as an acceptable rate of recurrent equinus, at medium term follow-up.

Description of Methods

This was a retrospective, consecutive cohort study of children with spastic diplegia, between 1996 and 2006. All children had distal gastrocnemius recession or differential gastrocsoleus lengthening, on one or both sides, as part of Single Event Multilevel Surgery. The primary outcome measures were the Gait Variable Scores (GVS) and Gait Profile Score (GPS) at two time points after surgery.


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1256 - 1264
1 Sep 2017
Putz C Wolf SI Mertens EM Geisbüsch A Gantz S Braatz F Döderlein L Dreher T

Aims. A flexed knee gait is common in patients with bilateral spastic cerebral palsy and occurs with increased age. There is a risk for the recurrence of a flexed knee gait when treated in childhood, and the aim of this study was to investigate whether multilevel procedures might also be undertaken in adulthood. Patients and Methods. At a mean of 22.9 months (standard deviation 12.9), after single event multi level surgery, 3D gait analysis was undertaken pre- and post-operatively for 37 adult patients with bilateral cerebral palsy and a fixed knee gait. Results. There was a significant improvement of indices and clinical and kinematic parameters including extension of the hip and knee, reduction of knee flexion at initial contact, reduction of minimum and mean knee flexion in the stance phase of gait, improved range of movement of the knee and a reduction of mean flexion of the hip in the stance phase. Genu recurvatum occurred in two patients (n = 3 legs, 4%) and an increase of pelvic tilt (> 5°) was found in 12 patients (n = 23 legs, 31%). Conclusion. Adult patients with bilateral cerebral palsy and a flexed knee gait benefit from multilevel surgery including hamstring lengthening. The risk of the occurence of genu recurvatum and increased pelvic tilt is lower than has been previously reported in children. Cite this article: Bone Joint J 2017;99-B:1256–64


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 26 - 26
23 Apr 2024
Aithie J Herman J Holt K Gaston M Messner J
Full Access

Introduction. Limb deformity is usually assessed clinically assisted by long leg alignment radiographs and further imaging modalities (MRI and CT). Often decisions are made based on static imaging and simple gait interpretation in clinic. We have assessed the value of gait lab analysis in surgical decision making comparing surgical planning pre and post gait lab assessment. Materials & Methods. Patients were identified from the local limb reconstruction database. Patients were reviewed in the outpatient clinic and long leg alignment radiographs and a CT rotational limb profile were performed. A surgical plan was formulated and documented. All patients then underwent a formal gait lab analysis. The gait lab recommendations were then compared to the initial plan. Results. Twelve patients (8 female) with mean age of 14 (range 12–16) were identified. Nine were developmental torsional malalignments, one arthrogryposis, one hemiparesis secondary to spinal tumour resection and one syndromic limb deficiency. The gait lab recommended conservative management in four patients and agreed with eight surgical plans with one osteotomy level changing. Five patients are post-operative: two bilateral distal tibial osteotomies, two de-rotational femoral osteotomy with de-rotational tibial osteotomies and one bilateral femoral de-rotational osteotomies. Conclusions. Limb deformity correction is major surgery with long rehabilitation and recovery period. Gait lab analysis can identify who would benefit from conservative management rather than surgery with our study showing changes to surgical planning in one third of patients. The gait lab analysis helps to identify patients with functional and neuromuscular imbalances where correcting the bony anatomy may not actually benefit the patient


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 44 - 44
7 Nov 2023
Crawford H Recordon J Stott S Halanski M Mcnair P Boocock M
Full Access

In 2010, we published results of Ponseti versus primary posteromedial release (PMR) for congenital talipes equinovarus (CTEV) in 51 prospective patients. This study reports outcomes at a median of 15 years from original treatment. We followed 51 patients at a median of 15 years (range 13–17 years) following treatment of CTEV with either Ponseti method (25 patients; 38 feet) or PMR (26 patients; 42 feet). Thirty-eight patientsd were contacted and 33 participated in clinical review (65%), comprising patient reported outcomes, clinical examination, 3-D gait analysis and plantar pressures. Sixteen of 38 Ponseti treated feet (42%) and 20 of 42 PMR treated feet (48%) had undergone further surgery. The PMR treated feet were more likely to have osteotomies and intra- articular surgeries (16 vs 5 feet, p<0.05). Of the 33 patients reviewed with multimodal assessment, the Ponseti group demonstrated better scores on the Dimeglio (5.8 vs 7.0, p<0.05), the Disease Specific Instrument (80 vs 65.6, p<0.05), the Functional Disability Inventory (1.1 vs 5.0, p<0.05) and the AAOS Foot & Ankle Questionnaire (52.2 vs. 46.6, p < 0.05), as well as improved total sagittal ankle range of motion in gait, ankle plantarflexion range at toe off and calf power generation. The primary PMR group displayed higher lateral midfoot and forefoot pressures. Whilst numbers of repeat surgical interventions following Ponseti treatment and primary PMR were similar, the PMR treated feet had greater numbers of osteotomies and intra-articular surgeries. Outcomes were improved at a median of 15 years for functional data for the Ponseti method versus PMR, with advantages seen in the Ponseti group over several domains. This study provides the most comprehensive evaluation of outcomes close to skeletal maturity in prospective cohorts, reinforcing the Ponseti Method as the initial treatment of choice for idiopathic clubfeet


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 31 - 31
1 May 2021
Fagir M James L
Full Access

Introduction. Brachymetatarsia is a rare deformity affecting the toes and leading to functional and psychological impact. The main aim of the study is to assess the efficacy of the surgical callus distraction technique in terms of length achievement in the paediatric group. Secondary objectives are functional improvement, reported complications and overall duration of treatment. Materials and Methods. For the series of cases involving all paediatric patients who had surgical correction at our unit from 2014 until the present, the electronic records were accessed to collect data. Pre-, peri- and post-operative assessments and investigations were used to evaluate patients' progress. The final plain films obtained were used to calculate the overall length achieved. Results. Six patients (ten feet) have been identified since 2014 with 12 metatarsals being gradually lengthened by applying the callus distraction principle using MiniRail OrthoFix 100. The majority are females (n=5), all of whom were diagnosed with congenital brachymetatarsia, with the only male (n=1) being post-traumatic, while the mean age is 14.5 ±1.5. The treatment was successful in all cases, with an average duration between surgery and metal removal of 5.5 ±1.3 months. Gait lab analysis was performed in (n=2) patients as part of preoperative analysis supporting surgical intervention. Complications were reported in two toes, with one requiring a revision procedure for loss of tension at the osteotomy site, and the second having an infected MTPJ stabilising k-wire treated with oral antibiotics and planned removal. Conclusions. In the paediatric group, gradual MT lengthening surgery using the Mini Ex-Fix is an effective method to treat brachymetatarsia. Preoperative assessment, psychological support and preparation for the extended rehabilitation period are vital. Gait lab analysis is advised pre- as well as postoperatively and this is now our protocol for supporting surgical decision


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 67 - 67
1 Apr 2019
DesJardins J Lucas E Chillag K Voss F
Full Access

Background. Clinical and anatomical complications from total knee replacement (TKR) procedures are debilitating, and include weakness, damage, and the loss of native anatomy. As the annual number of primary TKR surgeries in the United States has continued to rise, to a projected 3.48 million in 2030, there has been a concomitant rise in revision surgery. Damage to or loss of native knee anatomy as a result of TKR revision can leave the patient with irreversible knee dysfunction, which is a contra-indication for most TKR systems on the market. This leaves the multi-revision patient with limited medical options. Complete fusion of the joint, known as arthrodesis, is indicated in some cases. Arthrodesis is also commonly indicated for traumatic injury, bone loss, quadriceps extensor mechanism damage, and osteosarcoma. While this treatment may resolve pain and allow a patient to walk, the inability to flex the knee results in considerable functional complications. Patients with arthrodesis are unable to drive, sit in close-quarter spaces, or engage in a significant number of activities of daily living. Product Statement. The authors have developed and patented the Engage Knee System, a novel TKR system that allows a patient to lock and unlock the knee joint by means of a handheld, non-invasive device. An internal locking mechanism is constructed of materials that have been used in orthopedic joint replacements that have been approved through the FDA 510(k) process. A lightweight, handheld magnetic device is used to actuate the locking mechanism. No percutaneous components are required or present. This device allows a patient to lock their knee joint in full extension to ambulate with the functional equivalence of an arthrodesis, but allows a patient to unlock the device and bend the knee to engage in passive activities that would be otherwise difficult or impossible. The IP portfolio for this technology is owned by Clemson University, and they are seeking a partner/licensee to pursue further technology development and validation. Methods. A literature review of knee arthrodesis incidence and prevalence has been published by the inventors. Three- dimensional gait analysis was used to characterize rigid-knee gait kinematics and kinetics to verify potential implant design loads. Multiple physical prototypes of the design were created and implanted in Sawbones synthetic knee models, and a final prototype using industry-standard arthroplasty materials was contract-manufactured. Results. The Engage system is capable of locking and unlocking in full extension with the use of a non-invasive hand-held device. The device will support the loading patterns and magnitudes during stiff knee gait, as estimated through gait analysis and musculoskeletal modeling, when it is locked in full extension. Conclusion. The Engage Knee System bridges the gulf between existing treatments, and addresses not only patients who would otherwise undergo arthrodesis, but also patients who have avoided treatment or who currently undergo high-risk revision procedures. The device is also a viable option for arthrodesis takedown, providing patients who have already undergone arthrodesis a means of regaining knee flexion


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 13 - 13
1 Jun 2021
Anderson M Van Andel D Foran J Mance I Arnold E
Full Access

Introduction. Recent advances in algorithms developed with passively collected sensor data from smart phones and watches demonstrate new, objective, metrics with the capacity to show qualitative gait characteristics. The purpose of this feasibility study was to assess the recovery of gait quality following primary total hip and knee arthroplasty collected using a smartphone-based care platform. Methods. A secondary data analysis of an IRB approved multicenter prospective trial evaluating the use of a smartphone-based care platform for primary total knee arthroplasty (TKA, n=88), unicondylar knee arthroplasty (UKA, n=28), and total hip arthroplasty (THA, n=82). Subjects were followed from 6 weeks preoperative to 24 weeks postoperative. The group was comprised of 117 females and 81 males with a mean age of 61.4 and BMI of 30.7. Signals were collected from the participants' smartphones. These signals were used to estimate gait quality according to walking speed, step length, and timing asymmetry. Post-operative measures were compared to preoperative baseline levels using a Signed-Rank test (p<0.05). Results. Mean walking speeds were lowest at postoperative week 2 for all three procedures (p<.001). The TKA population stabilized to preoperative speeds by week 17. For UKA cases, mean walking speeds rebounded to preoperative speed consistently by week 9 (p>.05). THA cases returned to preoperative walking speeds with a stable rebound starting at week 6 (p>.05), and improvement was seen at week 14 (p=.025). The average weekly step length was lowest in postoperative week 2 for both TKA and UKA (p<.001), and at week 3 for THA (p<.001). The TKA population rebounded to preoperative step lengths at week 9 (p=0.109), UKA cases at week 7 (p=.123), and THA cases by week 6 (p=.946). For TKA subjects, the change in average weekly gait asymmetry peaked at week 2 postoperatively (p <0.001), returning to baseline symmetry by week 13 (p=.161). For UKA cases, mean gait asymmetry also reached its maximum at week 2 (p =.006), returning to baseline beginning at week 7 (p=0.057). For THA cases mean asymmetry reached its maximum in week 2 (p <0.001) and was returned to baseline values at week 6 (p=.150). Discussion and Conclusion. Monitoring gait quality in real-world patient care following hip and knee arthroplasty using smart phone technology demonstrated recovery curves similar to previously reported curves captured by traditional gait analysis methods and patient reported outcome scores. Capturing such real-world gait quality metrics passively through the phone may also provide the advantage of removing the Hawthorne effect related to typical gait assessments and in-clinic observations, leading to a more accurate picture of patient function