In order to evaluate the feasibility of zinc alloys as future biodegradable bone implant materials, the mechanical properties, corrosion resistance, hemocompatibility, cell activity, proliferation and adhesion,
Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs. We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible
Since 2010, there has been a sharp decline in the use of metal-on-metal joint replacement devices due to adverse responses associated with the release of metal wear particles and ions in patients. Surface engineered coatings offer an innovative solution to this problem by covering metal implant surfaces with biocompatible and wear resistant materials. The present study tests the hypothesis whether surface engineered coatings can reduce the overall biological impact of a device by investigating recently introduced silicon nitride coatings for joint replacements. Biological responses of peripheral blood mononuclear cells (PBMNCs) to Si3N4 model particles, SiNx coating wear particles and CoCr wear particles were evaluated by testing cytotoxicity, inflammatory cytokine release, oxidative stress and genotoxicity. Clinically relevant wear particles were generated from SiNx-on-SiNx and CoCr-on-CoCr bearing combinations using a multidirectional pin-on-plate tribometer. All particles were heat treated at 180°C for 4 h to destroy endotoxin contamination. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell) and incubated with particles at various volumetric concentrations (0.5 to 100 µm3 particles/cell) for 24 h in 5% (v/v) CO2 at 37°C. After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer); TNF-alpha release was measured by ELISA (Invitrogen); oxidative stress was measured using H2DCFDA (Abcam); and DNA damage was measured by comet assay (Tevigen). The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. No evidence of cytotoxicity, oxidative stress, TNF-alpha release, or DNA damage was observed for the silicon nitride particles at any of the doses. However, CoCr wear particles caused cytotoxicity, oxidative stress, TNF-alpha release and DNA damage in PBMNCs at high doses (50 µm3 particles per cell). This study has demonstrated the in-vitro biocompatibility of SiNx coatings with primary human monocytic cells. Therefore, surface engineered coatings have potential to significantly reduce the biological impact of metal components in
It is well established that cell behaviour is responsive to the surrounding environment. Chemistry, material stiffness and topography allow control of cell adhesion, proliferation, growth and differentiation. Biomimicry is playing a role in the next generation of biomaterials, surface engineering on orthopaedic implants may promote improved skeletal integration. Human osteoblasts were cultured on engineered micro-topographical features with nanoscale depths, similar in scale to an osteoclast resorption pit. Three different micro-topographies were used (in addition to planar controls.) created on a hot moulded polymer. The cells were cultured in basal media on surfaces with 20, 30 and 40 micrometer circular pits, each with a depth of 400 nanometers. The cells were fixed at time points 3 days, 21 days and 28 days to allow assessment of cytoskeletal development, production of protein markers of bone production (osteopontin) and mineral deposition respectively. At each time point greater indicators of cell activity and bone production were evident on the 30 and 40 micrometer structures as compared with the 20 micrometer structures and the planar controls. These positive results include increased focal adhesions, stronger expression of intracellular and extracellular osteopontin and more mature nodules of calcium formation. This in vitro study demonstrates that micro and nanotopographies influence cell activity. Osteoblast response can be induced on the surface of a
Summary. Aim of this study is to design, develop and preclinical test PET nanostructured scaffolds for the transplantation and differentiation of MSCs in the treatment of bone defects. The interaction of cells with nanotopographical features has proven to be an important signaling modality in controlling MSC differentiation. Introduction. The wide bone defects, caused by trauma, tumor, infectious, periprosthetic osteolysis, need to be surgically treated because their low potential of repair. Nowadays the bone allograft and autograft represent 80% of all transplantation done in the world. However this technique shows many disadvantages, such as the risk of infections, the immunological rejection, the low bone availability and the high costs. These reasons have motivated extensive research to find alternative strategies. As shown in literature, the future strategies are based on the synergic combination of different methodologies: use of biomimetic scaffold in order to support bone regeneration, use of mesenchymal stromal cells (MSCs) and growth factors. Successful regeneration necessitates the development of tissue-inducing scaffolds that mimic the hierarchical architecture of native tissue extracellular matrix (ECM). Cells in nature recognise and interact with the surface topography they are exposed to via ECM proteins. Here we are going to show the guidelines recently published for the design and development of nanostructured scaffolds for the bone regeneration, and the morphofunctional changing of MSCs interacting with nanogratings. Methods. Aim of this study is to design, develop and preclinical test PET nanostructured scaffolds for the transplantation and differentiation of MSCs in the treatment of bone defects. The first step of our study was the extraction of patient's bone marrow and the isolation of MSCs. After characterizing (demonstrating the typical cell surface markers) and isolating the MSCs were cultivated on the PET substrates. The PET nanosubstrates were obtained by a low temperature embossing lithography (HEL) achieving low-damage nanotopographic surface modifications. After MSC cultivation on PET substrates we made a cytotoxicity evaluation, an optic and confocal microscopic evaluation (cells adhesion, cells polarization…) and tests to optimise cell differentiation towards osteogenic fate. Results. PET is a highly suitable thermo-plastic material, able to sustain the necessary methods to obtain nanostructured substrates. MSCs cultivated on nanostructured PET rapidly align with the direction of the nanostructure itself without any cytotoxic effects. After the cultivation on the nanostructures, MSCs sustained cytoskeleton changes suggesting the activation of intracellular signaling (mechanotrasduction) promoting osteogenesis. Discussion. The mechanisms by which nanotopographic cues influence stem cell proliferation and differentiation appear to involve changes in cytoskeletal organization and structure, potentially in response to the geometry and size of the underlying features of the ECM by a process called mechanotrasduction. The interaction of cells with nanotopographical features such as pores, ridges, groves, fibers, nodes, and their combinations has proven to be an important signaling modality in controlling cellular processes. Integrating nanotopographical cues is especially important in engineering complex tissues that have multiple cell types and require precisely defined cell-cell and cell-matrix interactions at the nanoscale. Thus, in the next-generation regenerative engineering approaches, nanoscale materials/scaffolds are expected to play a parimary role in controlling MSC fate and the consequent regenerative capacity. We believe that the continuous development of nanotechnology and deeply comprehension of how mechanical inputs can affect cell biology is fundamental to design the
Trauma and orthopaedics is the largest of the
surgical specialties and yet attracts a disproportionately small
fraction of available national and international funding for health
research. With the burden of musculoskeletal disease increasing,
high-quality research is required to improve the evidence base for
orthopaedic practice. Using the current research landscape in the
United Kingdom as an example, but also addressing the international
perspective, we highlight the issues surrounding poor levels of
research funding in trauma and orthopaedics and indicate avenues
for improving the impact and success of surgical musculoskeletal
research. Cite this article: