Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 7 - 7
1 May 2016
Longaray J Hooks B Herrera L Essner A Higuera C
Full Access

Prosthetic Hip dislocations remain one of the most common major complications after total hip arthroplasty procedures, which has led to much debate and refinement geared to the optimization of implant and bearing options, surgical approaches, and technique. The implementation of larger femoral heads has afforded patients a larger excursion distance and primary arc range motion before impingement, leading to lowered risk of hip dislocation. However, studies suggest that while the above remains true, the use of larger heads may contribute to increased volumetric wear, trunnion related corrosion, and an overall higher prevalence of loosening, pain, and patient dissatisfaction, which may require revision hip arthroplasty. More novel designs such as the dual mobility hip have been introduced into the United States to optimize stability and range of motion, while possibly lowering the frictional torque and modes of failure associated with larger fixed bearing articulations. Therefore, the aim of this study is to compare the effect of bearing design and anatomic angles on frictional torque using a clinically relevant model8. Two bearing designs at various anatomical angles were used; a fixed and a mobile acetabular component at anatomical angles of 0°,20°,35°,50°, and 65°. The fixed design consisted of a 28/56mm inner diameter/outer diameter acetabular hip insert that articulated against a 28mm CoCr femoral head (n=6). The mobile design consisted of a 28mm CoCr femoral head into a 28/56mm inner diameter/outer diameter polyethylene insert that articulates against a 48mm metal shell (n=6). The study was conducted dynamically following a physiologically relevant frictional model8. A statistical difference was found only between the anatomical angles comparison of 0vs65 degrees in the mobile bearing design. In the fixed bearing design, a statistical difference was found between the anatomical angles comparison of 20vs35 degrees, 20vs50 degrees, and 35vs65 degrees. No anatomical angle effect on frictional torque between each respective angle or bearing design was identified. Frictional torque was found to decrease as a function of anatomical angle for the fixed bearing design (R2=0.7347), while no difference on frictional torque as a function of anatomical angle was identified for the mobile bearing design. (R2=0.0095). These results indicate that frictional torque for a 28mm femoral head is not affected by either anatomical angle or bearing design. This data suggests that mobile design, while similar to the 28mm fixed bearing, may provide lower frictional torque when compared to larger fixed bearings >or= 32mm8. Previous work by some of the authors [8] show that frictional torque increases as a function of femoral head size. Therefore, this option may afford surgeons the ability to achieve optimal hip range of motion and stability, while avoiding the reported complications associated with using larger fixed bearing heads8. It is important to understand that frictional behavior in hip bearings may be highly sensitive to many factors such as bearing clearance, polyethylene thickness/stiffness, polyethylene thickness/design, and host related factors, which may outweigh the effect of bearing design or cup abduction angle. These factors were not considered in this study


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 154 - 154
1 Dec 2013
Raja LK Yanoso-Scholl L Nevelos J Schmidig G Thakore M
Full Access

Introduction. Frictional torque is generated at the hip joint during normal gait loading and motion [1]. This study investigated the effect of shell deformation due to press-fit on frictional torque generated at the articulating surfaces of cementless acetabular shells that incorporated fixed and dual mobility bearing designs. Materials and Methods. Figure 1 lists the study groups (minimum of n = 5). All groups were tested with a 50 mm Trident PSL shell (Stryker Orthopaedics, NJ) and a Ti6Al4V trunnion. Metal-on-Metal specimens were custom designed and manufactured, and are not approved for clinical use. The remaining groups consisted of commercially available products (Stryker Orthopaedics, NJ). All groups were tested with the shells in deformed and undeformed states. Deformed Setup: A two-point relief configuration was created in a polyurethane foam block (Figure 2) with a density of 30 lb/ft. 3. to replicate shell deformation due to press-fit [2]. The blocks were machined to replicate the press-fit prescribed in the shell's surgical protocol. Each shell was assembled into the foam block by applying an axial force at 5 mm/min until it was completely seated. Undeformed Setup: Each shell was assembled in a stainless steel block with a hemispherical cavity that resulted in a line-to-line fit with the shell OD. Frictional torque was measured using a physiologically relevant test model [3]. In this model, the specimen block was placed in a fixture to simulate 50° abduction and 130° neck angle (Figure 2). A 2450N side load was applied and the femoral head underwent angular displacement of ± 20° for 100 cycles at 0.75 Hz. The articulating surfaces were lubricated with 25% Alpha Calf Fraction Serum. Peak torque was observed towards the end or the beginning of each cycle where the velocity of the femoral head approaches 0 and the head changes direction. This torque is referred as maximum static frictional torque. Specimen groups were statistically compared with a single-factor ANOVA test and a Tukey post-hoc test at 95% confidence level. Paired t-tests were performed to compare individual groups in deformed and undeformed states. Results. Figure 3 contains the results. In both deformed and undeformed states, the MoM group exhibited the highest frictional torque whereas the MDM group had the lowest frictional torque. In both states, the difference in frictional torque between MoM vs. 28 mm–Fixed Bearing and MoM vs. MDM was statistically significant whereas the difference between 28 mm-Fixed Bearing and MDM was not statistically significant. Shell deformation due to press-fit did not have a significant effect on any of the groups. Discussion. This study evaluated the effect of press-fit on the frictional torque generated in various cementless acetabular systems using a physiologically relevant in-vitro test model. Results from this test suggest a trend towards lower frictional torque for dual mobility bearings, which is worthy of further investigation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 473 - 473
1 Dec 2013
Panagiotidou A Bolland B Meswania J Skinner J Haddad F Hart A Blunn G
Full Access

Introduction:

High failure rates with large diameter, metal on metal hip replacements have highlighted a potential issue with the head/stem taper junction as one of the significant sources of metal ion release. Postulated reasons as to why this may be such a problem with large head metal on metal hip replacements is due to the increased torque achieved by the larger head size. This may be responsible for applying greater micromotion between the head and stem taper and consequently greater amounts of fretting corrosion. The aim of this study was to perform short term in vitro electrochemical tests to assess the effect of increasing head diameter and torque on the fretting corrosion susceptibility of the head/stem taper interface and to investigate its effect on different material combinations.

Methods:

36 mm Cobalt Chrome (CoCr) femoral heads were coupled with either a CoCr or Titanium (Ti) stem with 12/14 tapers, all with a smooth surface finish. Increasing perpendicular horizontal offsets in the sagittal plane created incremental increases in torque. Offset increments of 0 mm, 5.4 mm and 7.5 mm were selected (Figure 1) to simulate the torque force equivalent to 9 Nm, 12 Nm and 17 Nm. An inverted hip replacement setup was used (ASTM F1875-98) (Figure 2). Components were statically loaded at 0 kN and 2.3 kN prior to sinusoidal cyclic loading and electrochemical testing. Mean & fretting currents were calculated every 50 cycles up to a maximum of 1000 cycles of sinusoidal cyclic loading at 3 Hz along with the Overall Mean Current (OMC), Overall Mean Fretting Current (OMFC) and Overall Current change (OCC).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 121 - 121
1 Dec 2013
Longaray J Lee R Herrera L Schweitzer A Essner A
Full Access

Burroughs et al showed that frictional torque increases with increasing head size in a simple in vitro model and showed differences in frictional torque with different polyethylene materials [1]. Therefore, the purpose of this study was to evaluate the influence of bearing material and bearing size on the frictional torque of hip bearings utilizing a more physiologically relevant hip simulator model.

A total of four hip bearing combinations (Crosslinked PE/CoCr, Conventional PE/CoCr, Crosslinked PE/Delta and Alumina /Alumina) with various bearing sizes were evaluated. The sizes tested in this study range from 22 mm to 44 mm; it is important to note that the study only evaluated bearing combinations (size and material combination) currently commercially available. A total of three samples per bearing combination were tested, with the exception of conventional PE, which included a total of 4 samples. A MTS hip joint simulator was used. All components were oriented anatomically with the femoral head mounted below on a rotating angled block which imparts a 23° biaxial rocking motion onto the head. Loading was held constant at each load level (500N, 1000N, 1500N, 2000N, 2450N) for at least two rotational cycles while all 3 axes of load and all 3 axes of moments were measured at 10 khz. Fresh Alpha Calf Fraction serum was utilized as a lubricant.

Results show that frictional torque increases with the increase of head size regardless of head material for all polyethylene combinations (p > 0.05), as shown in Figure 1 and 2. However, results showed no change in frictional behavior for the Alumina/Alumina combination regardless of the bearing size. The results of this test did not show any significant difference between crosslinked PE and conventional PE materials for sizes 28 mm and 32 mm when paired against a CoCr head (p > 0.05) (Figure 3). The Alumina/Alumina bearing combination had the lowest frictional torque among all the bearing material combinations evaluated in this study.

This data suggests that there is a strong correlation between increased head size and increased frictional torque (R2 = 0.6906, 0.8847) for the polyethylenes evaluated here regardless of head material. No correlation can be concluded for the Alumina /Alumina bearing combination (R2 = 0.0217). The combination of Alumina /Alumina seems to have the most favorable frictional properties. This data also suggests no effect on frictional properties regardless of the polyethylene material (crosslinked and conventional) for sizes 28 mm and 32 mm. The frictional torque values recorded in this study are different than those published by Burroughs et al [1]. This difference may be attributed to the testing methodology. The current study utilizes a hip simulator, which closely mimics the natural joint providing a more physiologically relevant model whereas the Burroughs et al study utilizes a single axis machine. It is important to understand that frictional behavior in hip bearings may be highly sensitive to bearing clearance, cup thickness, and stiffness, which may outweight the effect of head diameter. Further evaluation is necessary to isolate and investigate those parameters.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 80 - 80
1 Nov 2015
Meneghini R
Full Access

Recent issues related to trunionosis have created a new paradigm in choosing femoral head material in total hip arthroplasty. While many consider highly-crosslinked polyethylene (XLPE) to be the gold standard currently in acetabular liner bearing surface, the debate remains whether metal or ceramic heads are best paired with XLPE. Wear characteristics are similar within an order of magnitude when comparing cobalt chrome femoral heads with ceramic when used in combination with XLPE. Therefore, discernable differences between the two femoral head materials with respect to outcomes would be the result of other biomechanical factors. Notably the fretting and corrosion of metal heads at the modular taper of femoral components is a serious concern and represents a significant deterrent when considering this material. The fretting corrosion that occurs with metal femoral heads has recently been well documented in multiple reports, and can be associated with adverse local tissue reactions necessitating revision hip arthroplasty. Frictional torque has recently been implicated in taper corrosion at modular junctions. In a recent simulated in vivo study, large diameter CoCr femoral heads were associated with increased frictional torque compared to smaller metal heads, supporting recent taper corrosion retrieval studies. In one recent series, a 1.1% incidence of head-neck taper corrosion with a metal head was reported and the authors recommended use of ceramic femoral heads. The notable downside of ceramic femoral heads is the implant cost and potential for fracture. However, the incidence of femoral head fracture with the newer mixed delta ceramic heads is exceptionally low and infrequent (rate 1.7 per 100,000). Furthermore, the incidence of taper corrosion is negligible with ceramic heads, making it the bearing couple of choice among many surgeons in combination with XLPE


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 58 - 58
1 Dec 2013
Flohr M Haeussler K Preuss R Streicher R
Full Access

INTRODUCTION. Modular metal-on-metal hip implants show increased revision rates due to fretting and corrosion at the interface. High frictional torque potentially causes such effects at the head-taper interface, especially for large hip bearings. The aim of this study was to investigate fretting and corrosion of sleeved ceramic heads for large ceramic-on-ceramic (CoC) bearings. METHODS. The investigated system consists of a ceramic head (ISO 6474-2; BIOLOX® Option), a metal sleeve (Ti-6Al-4V, ISO 5832-3) and different metal stem tapers (Ti-6Al-4V, ISO 5832-3; stainless steel, ISO 5832-1; CoCrMo, ISO 5832-12). Three different test methods were used to assess corrosion behaviour and connection strength of head-sleeve-taper interfaces: . –. Fretting corrosion acc. to ASTM F1- Corrosion under in-vivo relevant loads. –. Frictional torque under severe i like conditions. Standardized fretting corrosion tests were carried out. Additionally, a long term test (0.5 mio. cycles) under same conditions was performed. Corrosion effects under 4.5 kN (stair climbing) and 10 kN (stumbling) were determined for three groups. One group was fatigue tested applying 4.5 mio. cycles at 4.5 kN and 0.5 mio. cycles at 10 kN in a corrosive fluid. In parallel two control groups (heads only assembled at same load levels) were stored in the same fluid for same time period. Pull-off tests were performed to detect the effect of corrosion on the interface strength. A new designed test was performed to analyse the connection strength and fretting-corrosion effects on the head-sleeve taper interfaces caused by frictional torque of large CoC bearings (48 mm). Two separate loading conditions were investigated in a hip joint simulator. One created bending torque (pure abduction/adduction), the other set-up applied rotational torque (pure flexion). A static axial force of 3 kN and movements with a frequency of 1 Hz up to 5 mio. cycles in the same corrosive fluid as in the second set of tests were applied for both tests. Surface analysis of the taper and sleeve surfaces was peformed. In order to detect loosening caused by frictional torque, torque-out tests were conducted after simulator testing. RESULTS. The measured currents (static and dynamic) from standard ASTM testing showed low values for all investigated taper materials even for long term testing (0.5 mio. cycles). The strength of the head-sleeve-taper connection was not affected by storing and fatigue testing in corrosive fluid at 4.5 kN and 10 kN. No critical increase or decrease of pull-off force could be observed. No loosening of the head-taper-sleeve connection was detected after hip simulator testing applying high frictional torque. For large CoC bearings (48 mm) with titanium alloy sleeves on appropriate stem tapers no critical corrosion effects could be found. Even testing low corrosion resistant stainless steel tapers as a worst case material showed only tribo-chemical layers and plastic deformation of the taper surfaces. CONCLUSION. All different tests of large ceramic modular heads (48 mm) with titanium adapters on various taper materials exhibited only minor effects on the surfaces of the modular connections. Even worst case material combinations, high loads, corrosive fluid and high frictional torque did not show any critical results using such aggressive test methods