Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 85 - 85
1 Jul 2022
Rahman A Heath D Mellon S Murray D
Full Access

Abstract. Introduction. In cementless UKR, primary fixation of the tibial component is achieved by press-fitting a keel (i.e. with interference) into a vertical slot cut into the proximal tibia. This may adversely affect the structural integrity of surrounding bone. Early post-operative peri-prosthetic tibial fractures are 7x more common in very small knees, but the aetiology of these fractures is unknown - such sizes are rarely used in the UK but more common in Asian populations. This study explores the effect of keel-related features in fracture risk of these very small tibias. Method. This in vitro study compares the effect of keel and slot depth (standard vs 33% shallower vs nil) and loading position (anterior/posterior gait range limits: mid-tibia vs 8mm posterior) on fracture load and path. 3D-printed titanium components were implanted using surgical instrumentation/technique, in bone-analogue foam machined to a CT-reconstructed very small tibia which subsequently experienced a peri-prosthetic fracture. Results. Introducing a standard slot reduces load-to-fracture by 50% (1421N-vs-710N, p<0.0001). Press-fitting a standard keel further reduces load-to-fracture by 40% (710N-vs-423N, p=0.0001). A shallower slot/keel increases load-to-fracture substantially (slot: 27% increase, 904N-vs-710N p=0.0003, slot+keel: 60% increase, 683N-vs-423N p=0.0004). Deeper keels fractured more vertically (current 8.2° vs shallow 15.5° vs nil 21°, degrees-to-vertical, p<0.0001). There was no difference caused by loading position. Conclusion. In very small tibias, a standard cementless keel significantly weakens the bone and may contribute to fractures. Therefore, decreasing interference or using a shallower keel should decrease the risk of fracture, although it might compromise fixation


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1628 - 1633
1 Dec 2015
Elmadag M Uzer G Yildiz F Erden T Bilsel K Büyükpinarbasili N Üsümez A Bozdag E Sen C

This animal study compares different methods of performing an osteotomy, including using an Erbium-doped Yttrium Aluminum Garnet laser, histologically, radiologically and biomechanically. A total of 24 New Zealand rabbits were divided into four groups (Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical saw blade and Group IV: laser). A proximal transverse diaphyseal osteotomy was performed on the right tibias of the rabbits after the application of a circular external fixator. The rabbits were killed six weeks after the procedure, the operated tibias were resected and radiographs taken.

The specimens were tested biomechanically using three-point bending forces, and four tibias from each group were examined histologically. Outcome parameters were the biomechanical stability of the tibias as assessed by the failure to load and radiographic and histological examination of the osteotomy site.

The osteotomies healed in all specimens both radiographically and histologically. The differences in the mean radiographic (p = 0.568) and histological (p = 0.71) scores, and in the mean failure loads (p = 0.180) were not statistically significant between the groups.

Different methods of performing an osteotomy give similar quality of union. The laser osteotomy, which is not widely used in orthopaedics is an alternative to the current methods.

Cite this article: Bone Joint J 2015;97-B:1628–33.