Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_14 | Pages 22 - 22
1 Jul 2016
Singh S Behzadian A Madhusudhan T Kuiper J Sinha A
Full Access

We investigated whether an alternative tension band wire technique will produce greater compression and less displacement at olecranon (elbow) fracture sites compared to a standard figure of eight tension band technique. Olecranon fractures are commonly treated with tension band wiring using stainless steel wire in a figure of eight configuration. However recently published studies have raised doubts over the validity of the tension band concept proving that the standard figure of eight configuration does not provide fracture compression when the elbow is flexed. We propose an alternative tension band technique where the figure of eight is applied in a modified configuration producing greater compression across the fracture. An artificial elbow joint was simulated using artificial forearm (ulna) and arm (humerus) bones. The design simulated the action of the muscles around the elbow joint to produce flexion and extension. There were two arms to this investigation. (1) Standard tension band wire configuration with stainless steel. (2) Modified tension band wire configuration with stainless steel. The simulated elbow was put through a range of movement and sensors measured the compression at the articular and non-articluar surfaces of the fracture. Measurements were taken for compression with different weights applied to challenge both the techniques of tension band wiring. Measurements from the non articular surface of the fracture demonstrated greater compression with alternative tension band technique. However it was not statistically significant (ANOVA). Compression at the articular surface of the fracture exhibited statistically significant (p<0.05) greater compression with the alternative technique. Neither technique produced greater compression during flexion of the simulated elbow. The alternative tension band wiring technique proved superior in providing greater compression over the fracture site


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 188 - 188
1 Jun 2012
Phillips J Boulton C Moran C Manktelow A
Full Access

We have identified 69 patients with Vancouver B1 periprosthetic fractures around stable femoral implants. Open reduction internal fixation is the recommended treatment; however recent studies have revealed high rates of nonunion. We have reviewed the fixation techniques utilized to treat these patients, and identified outcomes in relation to rates of union, further surgery and mortality. Patients were identified from a prospective database of all trauma admissions at Nottingham University Hospitals from 1999 to 2010. Hospital notes were independently reviewed and data retrieved. 69 patients were identified. Mean age 77 years and 63% were female. 51 (74%) occurred around total hip replacements and 18 (26%) around hip hemiarthroplasty after a previous hip fracture. Periprosthetic fracture occurred around an Exeter stem (n=18), Charnley (n=10), Austin Moore (n=15), other (n=6). 20 patients had undergone previous revision surgery. The mean time from index surgery to fracture was 58 months (median 24) around primary stems, and 48 months (median 22) around revision stems. 6 patients (9%) were treated non-operatively. Five of these had undisplaced fractures (all healed but one required revision due to loosening) and one was too unwell. 63 patients (91%) were treated by open reduction internal fixation. Of these, single plate fixation was performed in 40 cases (64%). In the vast majority of cases, lag screw fixation of the fracture with a long (>12 hole) pre-contoured 4.5mm locking plate was utilised with cables. Both locking and cortical screws were used to achieve stable fixation (Figure 1). A double plate technique was used in 16 cases (25%), where plates were placed perpendicularly to each other (laterally and anteriorly). Strut grafts were used in 13 cases (21%). 7 patients (11%) were treated with cables alone. 23 patients have subsequently died (33%). Two have been lost to follow up and three are awaiting union. There is a mean follow-up of 35 months. Deep infection occurred in 4 cases (6%). Non-union occurred in four cases (6%). Two of these were infected and one was treated with cables alone. Malunion occurred in one case treated with cables. One patient had a dislocation and two superficial infections occurred. Further surgery took place in 8 patients (12%). Three of the infected cases were revised and one underwent wound washout. The two other non-unions were revised. Three further revisions were performed: one for malunion, one for aseptic loosening (treated non-operatively) and another for a second periprosthetic fracture. Superficial wound washout was performed in one case. Mortality was 10% at 3 months, 22% at 1 year and 47% at 3 years. We have identified that union can be achieved in the majority of cases after periprosthetic fracture fixation. Cable fixation was associated with a high complication rate (7 cases: two requiring revision surgery: one nonunion, one malunion). We recommend that Vancouver B1 periprosthetic fractures are treated with meticulous technique to achieve anatomical reduction and fracture compression using lag screw technique and plating. Further mechanical support can be provided through the use of a second plate, cables and/or strut grafts