Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 92 - 92
1 Jan 2017
Favre J Bennour S Ulrich B Legrand T Jolles B
Full Access

Knee osteoarthritis (OA) is a serious health concern, requiring novel therapeutic options. Walking mechanics has long been identified as an important factor in the OA process. Specially, a larger peak knee adduction moment during the first half of stance (KAM) has been associated with the progression of medial knee OA. Consequently, various gait interventions have been designed to reduce the KAM, including walking with a decreased foot progression angle (FPA). Other gait variables have recently been associated with medial knee OA progression, particularly a larger peak knee flexion moment during stance (KFM) and a larger knee flexion angle at heel-strike (KFA). Currently, there is a paucity of data regarding the effect of reducing the FPA on the KFM and KFA. This study aimed to test for correlations between the FPA and the KAM, KFM and KFA. It was hypothesized that reducing the FPA is beneficial with respect to these three OA-related gait variables. Seven healthy subjects participated in this study after providing informed consent (4 male; 24 ± 5 years old; 21.9 ± 1.5 kg/m^2). Their walking mechanics was determined using a validated procedure based on a camera-based system (Vicon) and floor-mounted forceplates (Kistler). Participants were first asked to walk without instructions and these initial trials were used to determine their normal footstep characteristics. Then, footsteps with the same characteristics as during the normal trials, except for the FPA, were displayed on the floor and participants were requested to walk following these footsteps. Nine trials with visual instructions were collected for each participant, corresponding to FPA modifications in the range ± 20° compared to the normal FPA, with 5° increment. For each participant, the associations between FPA and knee biomechanics (KAM, KFM and KFA) were assessed using Pearson correlations based on the data from the 9 trials with FPA variations. Significant level was set a priori to 5%. Significant correlations were noted between FPA and KAM for 5 out of the 7 participants, with R comprised between 0.75 and 0.96. Four participants also reported significant correlations between FPA and KFA (−0.88<R<−0.69). Significant correlations between FPA and KFM were observed in 2 participants, with inconsistent R (−0.68 and 0.78). There was no significant correlation between FPA and walking speed for none of the participants. While the results confirmed that decreasing the FPA (toeing in) is often associated with a KAM reduction, they also showed relationships between decreased FPA and increased KFA. Therefore, this study suggests that reducing the FPA should be done in consideration of the possible negative changes in KFA. Similarly, although only one participant increased the KFM when decreasing the FPA, it seems important monitoring the effects FPA modifications could have on the KFM. The large variations observed among participants further suggest individualized gait modifications. This study should be extended to medial knee OA patients and longitudinal research is necessary to better understand the effects of decreasing the FPA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 112 - 112
14 Nov 2024
Tsagkaris C Hamberg ME Villefort C Dreher T Krautwurst BK
Full Access

Introduction. Understanding the implications of decreased femoral torsion on gait and running in children and adolescents might help orthopaedic surgeons to optimize treatment decisions. To date, there is limited evidence regarding the kinematic gait deviations between children with decreased femoral torsion and typically developing children as well as regarding the implications of the same on the adaptation of walking to running. Method. A three dimensional gait analysis study was undertaken to compare gait deviations during running and walking among patients with decreased femoral torsion (n=15) and typically developing children (n=11). Linear mixed models were utilized to establish comparisons within and between the two groups and investigate the relation between clinical examination, spatial parameters and the difference in hip rotation between running and walking. Result. Patients exhibited increased external hip rotation during walking in comparison to controls accompanied by higher peaks for the same as well as for, knee valgus and external foot progression angle. A similar kinematic gait pattern was observed during running with significant differences noted in peak knee valgus. In terms of variations from running to walking, patients internally rotated their initially external rotated hip by 4°, whereas controls maintained the same internal hip rotation. Patients and controls displayed comparable kinematic gait deviations during running compared to walking. The passive hip range of motion, torsions and velocity did not notably influence the variation between mean hip rotation from running to walking. Conclusion. This study underlines the potential of 3D gait kinematics to elucidate the functional implications of decreased FT and hence may contribute to clinical decision making


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 19 - 19
1 Jan 2017
Caravaggi P Avallone G Giangrande A Garibizzo G Leardini A
Full Access

In podiatric medicine, diagnosis of foot disorders is often merely based on tests of foot function in static conditions or on visual assessment of the patient's gait. There is a lack of tools for the analysis of foot type and for diagnosis of foot ailments. In fact, static footprints obtained via carbon paper imprint material have traditionally been used to determine the foot type or highlight foot regions presenting excessive plantar pressure, and the data currently available to podiatrists and orthotists on foot function during dynamic activities, such as walking or running, are scarce. The device presented in this paper aims to improve current foot diagnosis by providing an objective evaluation of foot function based on pedobarographic parameters recorded during walking. 23 healthy subjects (16 female, 7 males; age 35 ± 15 years; weight 65.3 ± 12.7; height 165 ± 7 cm) with different foot types volunteered in the study. Subjects' feet were visually inspected with a podoscope to assess the foot type. A tool, comprised of a 2304-sensor pressure plate (P-walk, BTS, Italy) and an ad-hoc software written in Matlab (The Mathworks, US), was used to estimate plantar foot morphology and functional parameters from plantar pressure data. Foot dimensions and arch-index, i.e. the ratio between midfoot and whole footprint area, were assessed against measurements obtained with a custom measurement rig and a laser-based foot scanner (iQube, Delcam, UK). The subjects were asked to walk along a 6m walkway instrumented with the pressure plate. In order to assess the tool capability to discriminate between the most typical walking patterns, each subject was asked to walk with the foot in forcibly pronated and supinated postures. Additionally, the pressure plate orientation was set to +15°, +30°, −15° and −30° with respect to the walkway main direction to assess the accuracy in measuring the foot progression angle (i.e. the angle between the foot axis and the direction of walk). At least 5 walking trials were recorded for each foot in each plate configuration and foot posture. The device allowed to estimate foot length with a maximum error of 5% and foot breadth with an error of 1%. As expected, the arch-index estimated by the device was the lowest in the cavus-feet group (0.12 ± 0.04) and the highest in the flat-feet group (0.29 ± 0.03). These values were between 4 – 10 % lower than the same measurements obtained with the foot scanner. The centre of pressure excursion index [1] was the lowest in the forcibly-pronated foot and the largest in the supinated foot. While the pressure plate used here has some limitations in terms of spatial resolution and sensor technology [2], the tool appears capable to provide information on foot morphology and foot function with satisfying accuracy. Patient's instrumental examination takes only few minutes and the data can be used by podiatrists to improve the diagnosis of foot ailments, and by orthotists to design or recommend the best orthotics to treat the foot condition