Knee osteoarthritis (OA) is a serious health concern, requiring novel therapeutic options. Walking mechanics has long been identified as an important factor in the OA process. Specially, a larger peak knee adduction moment during the first half of stance (KAM) has been associated with the progression of medial knee OA. Consequently, various gait interventions have been designed to reduce the KAM, including walking with a decreased
Introduction. Understanding the implications of decreased femoral torsion on gait and running in children and adolescents might help orthopaedic surgeons to optimize treatment decisions. To date, there is limited evidence regarding the kinematic gait deviations between children with decreased femoral torsion and typically developing children as well as regarding the implications of the same on the adaptation of walking to running. Method. A three dimensional gait analysis study was undertaken to compare gait deviations during running and walking among patients with decreased femoral torsion (n=15) and typically developing children (n=11). Linear mixed models were utilized to establish comparisons within and between the two groups and investigate the relation between clinical examination, spatial parameters and the difference in hip rotation between running and walking. Result. Patients exhibited increased external hip rotation during walking in comparison to controls accompanied by higher peaks for the same as well as for, knee valgus and external
In podiatric medicine, diagnosis of foot disorders is often merely based on tests of foot function in static conditions or on visual assessment of the patient's gait. There is a lack of tools for the analysis of foot type and for diagnosis of foot ailments. In fact, static footprints obtained via carbon paper imprint material have traditionally been used to determine the foot type or highlight foot regions presenting excessive plantar pressure, and the data currently available to podiatrists and orthotists on foot function during dynamic activities, such as walking or running, are scarce. The device presented in this paper aims to improve current foot diagnosis by providing an objective evaluation of foot function based on pedobarographic parameters recorded during walking. 23 healthy subjects (16 female, 7 males; age 35 ± 15 years; weight 65.3 ± 12.7; height 165 ± 7 cm) with different foot types volunteered in the study. Subjects' feet were visually inspected with a podoscope to assess the foot type. A tool, comprised of a 2304-sensor pressure plate (P-walk, BTS, Italy) and an ad-hoc software written in Matlab (The Mathworks, US), was used to estimate plantar foot morphology and functional parameters from plantar pressure data. Foot dimensions and arch-index, i.e. the ratio between midfoot and whole footprint area, were assessed against measurements obtained with a custom measurement rig and a laser-based foot scanner (iQube, Delcam, UK). The subjects were asked to walk along a 6m walkway instrumented with the pressure plate. In order to assess the tool capability to discriminate between the most typical walking patterns, each subject was asked to walk with the foot in forcibly pronated and supinated postures. Additionally, the pressure plate orientation was set to +15°, +30°, −15° and −30° with respect to the walkway main direction to assess the accuracy in measuring the