Introduction. Non-union is debilitating, costly and affects 2–8% of intramedullary fixed fractures. Clinical data suggest that percutaneous interfragmentary screws offer a less invasive alternative to exchange nailing. This study aimed to assess their efficiency with biomechanical analyses. Materials and Methods. A tibia was prepared for
A common location for radius fracture is the proximal radial head. With the arm in neutral position, the fracture usually happens in the anterolateral quadrant (Lacheta et al., 2019). If traditional surgeries are not enough to induce bone stabilization and vascularization, or the fracture can be defined grade III or grade IV (Mason classification), a radial head prosthesis can be the optimal compromise between bone saving and recovering the “terrible triad”. A commercially available design of radial head prosthesis such as Antea (Adler Ortho, Milan, Italy) is characterized by flexibility in selecting the best matching size for patients and induced osteointegration thanks to the Ti-Por. ®. radial stem realized by 3D printing with laser technique (Figure 1). As demonstrated, Ti-Por. ®. push-out resistance increased 45% between 8 −12 weeks after implantation, hence confirming the ideal bone-osteointegration. Additional features of Antea are: bipolarity, modularity, TiN coating, radiolucency, hypoallergenic, 10° self-aligning. The osteointegration is of paramount importance for radius, in fact the literature is unfortunately reporting several clinical cases for which the fracture of the prosthesis happened after bone-resorption. Even if related to an uncommon activity, the combination of mechanical resistance provided by the prosthesis and the stabilization due to the osteointegration should cover also accidental movements. Based upon Lacheta et al. (2019), after axial compression-load until radii failure, all native specimens survived a compression-load of 500N, while the failure happened for a mean compression force of 2560N. The aim of this research study was to test the mechanical resistance of a radial head prosthesis obtained by 3D printing. In detail, a
INTRODUCTION. In theory,
Introduction. A
Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on
Introduction. Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Materials and Methods. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4]. A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes)
Introduction. Total hip replacement is an established surgical procedure done to alleviate hip pain due to joint diseases. However, this procedure is avoided in yonger patients with higher functional demands due to the potential for early failure. An ideal prosthesis will have have a high endurance against impact loading, with minimal micromotion at the bone cement interface, and a reduced risk of fatigue failure, with a favourable stress distribution pattern in the femur. We study the effect of varying the material properties and design element in a standard cemented total hip using
Mechanical wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the trunnion-taper surface. In order to quantify the amount of volume loss to ultimate locations in the surrounding joint space,
Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The goal of this study was to identify the optimal augmented glenoid design based on
Introduction. Augmented glenoid implants provide a new avenue to correct glenoid bone loss and can possibly reconcile current prosthetic failures and improve long-term performance. Biomechanical implant studies have suggested benefits from augmented glenoid components but limited evidence exists on optimal design of these augmented glenoid components. The aim of this study was to use integrated kinematic
Introduction. In total hip arthroplasty, press-fit anchorage is one of the most common fixation methods for acetabular cups and mostly ensures sufficient primary stability. Nevertheless, implants may fail due to aseptic loosening over time, especially when the surrounding bone is affected by stress-shielding. The use of acetabular cups made of isoelastic materials might help to avoid stress-shielding and osteolysis. The aim of the present numerical study was to determine whether a modular acetabular cup with a shell made of polyetheretherketone (PEEK) may be an alternative to conventional titanium shells (Ti6Al4V). For this purpose, a 3D
Introduction. Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized
Introduction. Post cam is useful to realize the intrinsic stability of a posterior-stabilized (PS) knee prosthesis replaced for a case with the severe degeneration. Some retrieval studies reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of the tibial post of available design is obviously insufficient to prevent the severe deformation. The large size post might, however, shorten the range of knee motion. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed
Introduction. The use of open wedge high tibial osteotomy (OWHTO) to reduce knee pain by transferring weight-bearing loads to the relatively unaffected lateral compartment in varus knees and to delay the need for a knee replacement by slowing or stopping destruction of the medial joint compartment. To maintain the stability of OWHTO, the most common type of plate was T-Plate as the locking compression plate (LCP) concept. Anterior portion of T-Plate infringe patient's soft tissue resulted in some complications, whereas anatomical L-plate does not. To evaluate the structural stability of the anatomically contoured L-plate in the present study, the effect of weight bearing after osteotomy should be reviewed in the point of the stress of the plate and screws. We hypothesize that its stress path diverge through collateral portion of tibia and the stress level in screws lowered comparing to the result of T-plate presented in existing literature. Materials and Methods. Based on the postoperative CT data were made from the reconstruction model for finite-element model. The value of Young's modulus and Poisson's ratio were 17,000MPa and 0.36 for cortical bone and 300MPa and 0.3 for cancellous bone. The anatomically contoured L-Plate system, the material of all plate systems were surgical Ti-Alloy were homogeneous and linear properties (Young's modulus = 113,000MPa, Poisson's ratio = 0.33). The screw system were the same as the material properties of the anatomically contoured L-Plate system. For
Unicompartmental knee arthroplasty (UKA) is often considered to be attractive alternate surgical technique to total knee arthroplasty (TKA) and high tibial osteotomy (HTO), in particular young patients. In addition, it is recently reported that preservation of joint line in UKA is crucial factor for positive long-term outcome, especially in revision case for UKA. However, the role of this joint line has neither been invested nor is it consciously bothered during surgical implantation. Validated
Component positioning of an artificial hip joint plays a key role in durability of implant. Despite the fact that a number of numerical, experimental and clinical studies have been carried out to investigate the effects of cup inclination on polyethylene wear, steep inclination has been reported to be associated with both high and low volumetric wear. Moreover, how cup anteversion affects wear and its interaction with inclination are still unclear. To address these knowledge gaps, in this study wear and contact mechanics of a hip joint under various cup positioning has been investigated by using FEA (Finite Element Analysis). A Pinnacle® Marathon neutral liner 36×56mm was chosen to model the wear and creep over 3 million cycles (mc) based on the Archard's law and modified time hardening model in ANSYS, respectively. Central composite design of response surface method was used to generate 9 FEA runs, where the operative inclination angles varied from 35º, 45º to 55º and operative anteversion angles differed amongst 0º, 15º and 30º. The range of cup angles were chosen to be similar to the Lewinnek “golden” safe zone for dislocation. The gait cycle as specified in ISO 14242-1 was applied to the femoral head.INTRODUCTION
METHOD
Patellofemoral joint (PFJ) replacement is a successful treatment option for isolated patellofemoral osteoarthritis. With this approach only the involved joint compartment is replaced and the femoro-tibial joint remains intact. Minimizing periprosthetic bone loss, which may occur due to the stress shielding effect of the femoral component, is important to insure long-term outcomes. The objective of this study was to investigate, using finite element analyses, the effects of patellofemoral replacement on the expected stress distribution of the distal femur eventually leading to changes in bone density. MRI images of a healthy knee were acquired, segmented and reconstructed into a 3D physiological model of the bony and cartilaginous geometries of distal femur and patella with patellar tendon and insertion of the quadriceps tendon. This model was modified to include PFJ replacements with either a Journey PFJ or a Richards II PFJ prosthesis, and a Genesis II TKA (Smith&Nephew, Memphis, TN). The prosthetic components were incorporated in the intact model based on the manufacturer's instructions or previously described surgical techniques (Figure 1). Cortical bone was modeled with orthotropic properties, while homogeneous linear isotropic elasticity was assumed for trabecular bone, cartilage, cement and femoral components materials. The patellar tendon was given Neo-Hookean behavior. UHMWPE patellar buttons for all designs were assigned non-linear elasto-plastic material. The simulated motion consisted of a 10 second loaded squat, starting from 0° until a flexion angle of 120° matching experimental kinematics tests performed in previous in-vitro analysis on physiological cadaveric legs [1-2]. The patella model was constrained fixing the distal part of the patellar ligament and applying a quadriceps force distributed on the quadriceps insertion on the proximal surface of the patella. During the dynamic simulation the average Von Mises stress was calculated in two regions of interest (ROI) defined in the femoral bone: one anterior and one proximal. The location of the ROIs was defined to fit the same regions as used in a previous bone mineral density analysis following patellofemoral arthroplasty (height 1cm, length 1cm).INTRODUCTION
METHODS
Long-term biological fixation and stability of uncemented acetabular implant are influenced by peri-prosthetic bone ingrowth which is known to follow the principle of mechanoregulatory tissue differentiation algorithm. A tissue differentiation is a complex set of cellular events which are largely influenced by various mechanical stimuli. Over the last decade, a number of cell-phenotype specific algorithms have been developed in order to simulate these complex cellular events during bone ingrowth. Higher bone ingrowth results in better implant fixation. It is hypothesized that these cellular events might influence the peri-prosthetic bone ingrowth and thereby implant fixation. Using a three-dimensional (3D) microscale FE model representing an implant-bone interface and a cell-phenotype specific algorithm, the objective of the study is to evaluate the influences of various cellular activities on peri-prosthetic tissue differentiation. Consequently the study aims at identifying those cellular activities that may enhance implant fixation. The 3D microscale implant-bone interface model, comprising of Porocast Bead of BHR implant, granulation tissue and bone, was developed and meshed in ANSYS (Fig. 1b). Frictional contact (µ=0.5) was simulated at all interfaces. The displacement fields were transferred and prescribed at the top and bottom boundaries of the microscale model from a previously investigated macroscale implanted pelvis model (Fig. 1a) [4]. Periodic boundary conditions were imposed on the lateral surfaces. Linear elastic, isotropic material properties were assumed for all materials. Young's modulus and Poisson's ratios of bone and implant were mapped from the macroscale implanted pelvis [4]. A cell-phenotype specific mechanoregulatory algorithm was developed where various cellular activities and tissue formation were modeled with seven coupled differential equations [1, 2]. In order to evaluate the influence of various cellular activities, a Plackett-Burman DOE scheme was adopted. In the present study each of the cellular activity was assumed to be an independent factor. A total of 20 independent two-level factors were considered in this study which resulted in altogether 24 different combinations to be investigated. All these cellular activities were in turn assumed to be regulated by local mechanical stimulus [3]. The mechano-biological simulation was run until a convergence in tissue formation was attained. The cell-phenotype specific algorithm predicted a progressive transformation of granulation tissue into bone, cartilage and fibrous tissue (Fig. 1c). Various cellular activities were found to influence the time to reach equilibrium in tissue differentiation and, thereby, attainment of sufficient implant fixation (Fig. 2, Table 1). Negative regression coefficients were predicted for the significant factors, differentiation rate of MSCs and bone matrix formation rate, indicating that these cellular activities favor peri-prosthetic bone ingrowth by facilitating rapid peri-prosthetic bone ingrowth. Osteoblast differentiation rate, on the contrary, was found to have the highest positive regression coefficient among the other cellular activities, indicating that an increase in this cellular activity delays the attainment of equilibrium in bone ingrowth prohibiting rapid implant fixation.
Glenoid loosening, still a main complication in shoulder arthroplasty, could be related to glenohumeral orientation and conformity, cementing techniques, fixation design and periprosthetic bone quality [1,2]. While past numerical analyses were conducted to understand the relative role of these factors, so far none used realistic representations of bone microstructure, which has an impact on structural bone properties [3]. This study aims at using refined microFE models including accurate cortical bone geometry and internal porosity, to evaluate the effects of fixation design, glenohumeral conformity, and bone quality on internal bone tissue and cement stresses under physiological and pathological loads. Four cadaveric scapulae were scanned at 82µm resolution with a high resolution peripheral quantitative computer tomography (XtremeCT Scanco). Images were processed and virtually implantated with two anatomical glenoid replacements (UHMWPE Keeled and Pegged designs, Exactech). These images were converted to microFE models consisting of nearly 43 million elements, with detailed geometries of compact and trabecular bone, implant, and a thin layer of penetrating cement through the porous bone. Bone tissue, implant and cement layer were assigned material properties based on literature. These models were loaded with a central load at the glenohumeral surface, with the opposite bone surface fully constrained. Effects of glenohumeral conformity were simulated with increases of the applied load area from 5mm-radius to a fully conformed case with the entire glenoid surface loaded. The models were additionally subjected to a superiorly shifted load mimicking torn rotator cuff conditions. These models were solved and compared for internal stresses within the structures (Figure 1) with a parallel solver (parFE, ETH Zurich) on a computation cluster, and peak stresses in each region compared by design and related to apparent bone density.Introduction
Methods
Revision total knee arthroplasty (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone defects are frequently detected in revision TKA used with metal block augmentation. This study focused on identification of a potential possibility of the bone defect occurrence through the evaluation of the strain distribution on the cortical bone of the tibia implanted revision TKA with metal block augmentation, during high deep flexion. Composite tibia finite element (FE) model was developed and revision TKA FE model with a metal block augmentation (Baseplate size #5 44AP/67ML, Spacer size #5 44AP/67ML, Stem size Φ9, L30, Augment #5 44AP/67ML thickness 5mm) was integrated with the composite tibia FE model. 0°, 30° 60°, 90°, 120° and 140° flexion positions were then considered with femoral rollback phenomenon [Introduction
Materials and Methods