Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 6 - 6
1 May 2019
Scott C Clement N Yapp L MacDonald D Patton J Burnett R
Full Access

Anterior knee pain (AKP) is the commonest complication of total knee arthroplasty (TKA). This study aims to assess whether sagittal femoral component position is an independent predictor of AKP after cruciate retaining single radius TKA without primary patellofemoral resurfacing. From a prospective cohort of 297 consecutive TKAs, 73 (25%) patients reported AKP and 89 (30%) reported no pain at 10 years. Patients were assessed pre-operatively and at 1, 5 and 10 years using the short form 12 and Oxford Knee Score (OKS). Variables assessed included demographic data, indication, reoperation, patella resurfacing, and radiographic criteria. Patients with AKP (mean age 67.0 (38–82), 48 (66%) female) had mean Visual Analogue Scale (VAS) Pain scores of 34.3 (range 5–100). VAS scores were 0 in patients with no pain (mean age 66.5 (41–82), 60 (67%) female). Femoral component flexion (FCF), anterior femoral offset ratio, and medial proximal tibial angle all differed significantly between patients with AKP and no pain (p<0.001), p=0.007, p=0.009, respectively). All PROMs were worse in the AKP group at 10 years (p<0.05). OKSs were worse from 1 year (p<0.05). Multivariate analysis confirmed FCF and Insall ratio <0.8 as independent predictors of AKP (R. 2. = 0.263). Extension of ≥0.5° predicted AKP with 87% sensitivity. AKP affects 25% of patients following single radius cruciate retaining TKA, resulting in inferior patient-reported outcome measures at 10 years. Sagittal plane positioning and alignment of the femoral component are important determinants of long-term AKP with femoral component extension being a major risk factor


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims

To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture.

Methods

This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 109 - 109
1 Sep 2012
Corten K Walscharts S Sloten JV Bartels W Simon J
Full Access

Introduction. It was the purpose to evaluate the biomechanical changes that occur after optimal and non-optimal component placement of a hip resurfacing (SRA) by using a subject specific musculoskeletal model based on CT-scan data. Materials and Methods. Nineteen hips from 11 cadavers were resurfaced with a BHR using a femoral navigation system. CT images were acquired before and after surgery. Grey-value segmentation in Mimics produced contours representing the bone geometry and identifying the outlines of the 3 parts of the gluteus medius. The anatomical changes induced by the procedure were characterised by the translation of the hip joint center (HJCR) with respect to the pelvic and femoral bone. The contact forces during normal gait with ‘optimal’ component placement were calculated for a cement mantle of 3 mm, a socket inclination of 45° and anteversion of 15°. The biomechanical effect of ‘non-optimal placement’ was simulated by varying the positioning of the components. Results. There was a significant (p<0.01) shortening of the muscle length with the ‘optimal’ component placement for all parts of the gluteus medius with the largest shortening of the posterior part by 6mm. This was caused by a significant shortening of the femoral offset by 2.3mm (p<0.01). Because of a significant (p<0.01) medialisation of the HJCR by 4 mm, there was no significant increase in contact force. The hip joint contact forces increased by 0.5% per mm HJCR displacement. Each millimeter of cranial and lateral displacement of the femoral HJCR increased the contact force by 0.5% and 1%, respectively. The contact stresses changed significantly by 0.8% and 0.2% per degree of socket inclination and anteversion. The contact force increased 1% per mm lateral displacement of the acetabular HJCR. Discussion. Optimal placement of the SRA components did not completely restore the biomechanics of the native hip joint. The contact forces were not increased due to the compensatory effect of the medialisation of the acetabular HJCR. This suggests that reaming to the acetabular floor should be conducted in SRA. Femoral component displacement in the cranial and lateral direction significantly increased the hip joint loading. Errors of socket placement in the coronal and sagital plane significantly increased the contact stresses. Accumulative errors of both component displacements could lead to increased contact stresses of 18% to 23% with socket inclinations of 50° and 55°. Surgeons should reconsider continuing the SRA procedure if a neck length loss and lateralisation of the HCJR by >5 mm is anticipated as this would increase the contact stresses by >12%


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 238 - 238
1 Sep 2012
Ishii Y Noguchi H Takeda M Sato J
Full Access

The purpose of this study is to analyze what kind of pattern of change in each posterior femoral condyle allows for a greater degree of flexion after total knee arthroplasty (TKA). The flexion angle was assessed pre-operatively, and at 12 months after the surgery in 98 patients (106 knees) who underwent consecutive TKA. We used a quantitative 3 dimensional technique using computed tomography for the assessment of changes in both the medial and lateral femoral condylar offset. There were no significant correlation between changes of each posterior condylar offset and post flexion angle (medial condyle; R=−0.038, p=0.70, lateral condyle; R=−0.090, p=0.36). There were no significant differences between changing patterns and increase rate of flexion (p=0.443). Additionally there were no significant differences between changing patterns and increase of flexion angle (p=0.593). Changes of each posterior condylar offset were no correlation to knee flexion after TKA in the current design prosthesis


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1399 - 1408
1 Oct 2017
Scott CEH MacDonald D Moran M White TO Patton JT Keating JF

Aims

To evaluate the outcomes of cemented total hip arthroplasty (THA) following a fracture of the acetabulum, with evaluation of risk factors and comparison with a patient group with no history of fracture.

Patients and Methods

Between 1992 and 2016, 49 patients (33 male) with mean age of 57 years (25 to 87) underwent cemented THA at a mean of 6.5 years (0.1 to 25) following acetabular fracture. A total of 38 had undergone surgical fixation and 11 had been treated non-operatively; 13 patients died at a mean of 10.2 years after THA (0.6 to 19). Patients were assessed pre-operatively, at one year and at final follow-up (mean 9.1 years, 0.5 to 23) using the Oxford Hip Score (OHS). Implant survivorship was assessed. An age and gender-matched cohort of THAs performed for non-traumatic osteoarthritis (OA) or avascular necrosis (AVN) (n = 98) were used to compare complications and patient-reported outcome measures (PROMs).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 842 - 852
1 Jun 2010
Tannast M Krüger A Mack PW Powell JN Hosalkar HS Siebenrock KA

Surgical dislocation of the hip in the treatment of acetabular fractures allows the femoral head to be safely displaced from the acetabulum. This permits full intra-articular acetabular and femoral inspection for the evaluation and potential treatment of cartilage lesions of the labrum and femoral head, reduction of the fracture under direct vision and avoidance of intra-articular penetration with hardware. We report 60 patients with selected types of acetabular fracture who were treated using this approach. Six were lost to follow-up and the remaining 54 were available for clinical and radiological review at a mean follow-up of 4.4 years (2 to 9).

Substantial damage to the intra-articular cartilage was found in the anteromedial portion of the femoral head and the posterosuperior aspect of the acetabulum. Labral lesions were predominantly seen in the posterior acetabular area. Anatomical reduction was achieved in 50 hips (93%) which was considerably higher than that seen in previous reports. There were no cases of avascular necrosis. Four patients subsequently required total hip replacement. Good or excellent results were achieved in 44 hips (81.5%). The cumulative eight-year survivorship was 89.0% (95% confidence interval 84.5 to 94.1). Significant predictors of poor outcome were involvement of the acetabular dome and lesions of the femoral cartilage greater than grade 2. The functional mid-term results were better than those of previous reports.

Surgical dislocation of the hip allows accurate reduction and a predictable mid-term outcome in the management of these difficult injuries without the risk of the development of avascular necrosis.