Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 317 - 317
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of femoral implant design on high flexion contact stress. Two prostheses from a same TKA family were compared – one as a conventional design and the other as a high-flex design. Methods. Two cruciate retaining (CR) prostheses from a same TKA product family were included in this study. The first is a conventional design for up to 125° of flexion (Optetrak CR, Exactech, USA). The second is a high-flex design for up to 145° of flexion (Logic CR, Exactech, USA). The high-flex design has a femoral component which has modified posterior condyle geometry (Figure 1), with the intent to increase femorotibial contact area and decrease contact stress at high flexion. Three sizes (sizes 1, 3, and 5) from each prosthesis line were included to represent the commonly used size spectrum. Contact stress was evaluated at 135° of flexion using finite element analysis (FEA). The CAD models were simplified and finite element models were created assuming all materials as linear elastic (Figure 2). For comparison purpose, a compressive force of 20% body weight was applied to the femoral component. The average body masses of sizes 1, 3 and 5 patients are 69.6 kg, 89.9 kg, and 106.3 kg based on the manufacture's clinical database. A nonlinear FEA solver was used to solve the simulation. Von Mises stress in the tibial insert was examined and compared between the two prostheses. Results. The high-flex design demonstrated lower tibial insert stresses compared to the conventional design, and the stress reduction is consistent across different sizes (Figure 3). The peak von Mises stress of the high-flex design was 8.6 MPa, 10.8 MPa, and 11.9 MPa for sizes 1, 3 and 5, representing a 40% to 60% decrease compared to those of the conventional design (14.3 MPa, 26.5 MPa, and 25.6 MPa respectively). Discussion/Conclusion. One limitation of the study was that no material nonlinearity was considered in the FEA, thus stress values above the yield strength of polyethylene could be over-estimated. However, as a qualitative comparison, the analysis demonstrated the effectiveness of the high-flex design on reducing tibial insert contact stress. Although the actual flexion angle of a CR TKA patient is not fully defined by the prosthesis and largely affected by the patient's anatomy and pre-operative range of motion, a lower contact stress at high flexion indicates a more forgiving mechanical structure and less risk for polyethylene damage when the patient is able to perform high flexion activities


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 140 - 140
1 Jan 2016
de Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant.

Methods

We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA design implanted on a distal femur, and a tibial load applicator, which together with the bone cement layer and the tibial implant is referred to as the tibial construct. The knee flexion angle was controlled by the femoral construct, consisting of the femoral implant, the bone cement and the distal femur. The tibial construct was loaded with an axial force, anterior-posterior (AP) force and a rotational torque, representing the ground reaction force, soft tissue constraints and internal/external rotation of the tibia, respectively. The integrity of the femoral component and cement mantle were expressed as a percentage of their yield stress. Stress shielding in the periprosthetic femur was evaluated by the strain energy (density) in the bone and compared to a model replicating an intact knee joint.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 11 - 11
1 May 2016
Chanda S Gupta S Pratihar D
Full Access

The success of a cementless Total Hip Arthroplasty (THA) depends not only on initial micromotion, but also on long-term failure mechanisms, e.g., implant-bone interface stresses and stress shielding. Any preclinical investigation aimed at designing femoral implant needs to account for temporal evolution of interfacial condition, while dealing with these failure mechanisms. The goal of the present multi-criteria optimization study was to search for optimum implant geometry by implementing a novel machine learning framework comprised of a neural network (NN), genetic algorithm (GA) and finite element (FE) analysis. The optimum implant model was subsequently evaluated based on evolutionary interface conditions. The optimization scheme of our earlier study [1] has been used here with an additional inclusion of an NN to predict the initial fixation of an implant model. The entire CAD based parameterization technique for the implant was described previously [1]. Three objective functions, the first two based on proximal resorbed Bone Mass Fraction (BMF) [1] and implant-bone interface failure index [1], respectively, and the other based on initial micromotion, were formulated to model the multi-criteria optimization problem. The first two objective functions, e.g., objectives f1 and f2, were calculated from the FE analysis (Ansys), whereas the third objective (f3) involved an NN developed for the purpose of predicting the post-operative micromotion based on the stem design parameters. Bonded interfacial condition was used to account for the effects of stress shielding and interface stresses, whereas a set of contact models were used to develop the NN for faster prediction of post-operative micromotion. A multi-criteria GA was executed up to a desired number of generations for optimization (Fig. 1). The final trade-off model was further evaluated using a combined remodelling and bone ingrowth simulation based on an evolutionary interface condition [2], and subsequently compared with a generic TriLock implant. The non-dominated solutions obtained from the GA execution were interpolated to determine the 3D nature of the Pareto-optimal surface (Fig. 2). The effects of all failure mechanisms were found to be minimized in these optimized solutions (Fig. 2). However, the most compromised solution, i.e., the trade-off stem geometry (TSG), was chosen for further assessment based on evolutionary interfacial condition. The simulation-based combined remodelling and bone ingrowth study predicted a faster ingrowth for TSG as compared to the generic design. The surface area with post-operative (i.e., iteration 1) ingrowth was found to be ∼50% for the TSG, while that for the TriLock model was ∼38% (Fig. 3). However, both designs predicted similar long-term ingrowth (∼89% surface area). The long-term proximal bone resorption (upto lesser trochanter) was found to be ∼30% for the TSG, as compared to ∼37% for the TriLock model. The TSG was found to be bone-preserving with prominent frontal wedge and rectangular proximal section for better rotational stability; features present in some recent designs. The optimization scheme, therefore, appears to be a quick and robust preclinical assessment tool for cementless femoral implant design. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. METHODS. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona. ®. implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. RESULTS. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively (figure 3). CONCLUSION. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. The clinical impact of this finding remains to be defined. For figures/tables, please contact authors directly.