Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 91 - 91
1 Sep 2012
Verdonk P De Coninck T Huysse W Verdonk R
Full Access

Purpose. to evaluate the radial displacement of meniscal allograft transplants (MATs) in patients operated with an open technique vs. an arthroscopic technique at 1 year postoperatively. Radial displacement or extrusion of the graft is frequently observed after meniscus transplantation. The hypothesis is that arthroscopically inserted MATs extrude less than open MATs and therefore have a more intra-articular position than open surgery transplants. Materials and Methods. 39 patients were included in the study: the first group of open surgery transplants consisted of 16 patients (10 lateral, 6 medial). The second group of arthroscopic transplants consisted of 21 patients (14 lateral, 7 medial). MR-images were taken one year post-surgery. The displacement, evaluated on 1,5T MR coronal images, was defined as the distance between the tibial plateau and the outer edge of the meniscus. Results. The radial displacement of lateral open surgery transplants (mean = 4,04 mm; SD = 1,46) is significantly larger (p < 0,05) than the displacement of arthroscopically implanted MATs (mean = 3,38 mm; SD = 0,85). The external displacement of medial open surgery transplants (mean = 4,71 mm; SD = 0,97) is significantly larger (p < 0,05) than the displacement of arthroscopically implanted MATs (mean = 2,36 mm; SD = 0,89). Conclusion. Graft position is influenced by the surgical technique; the radial displacement of arthroscopically implanted MATs is, both lateral and medial, significantly less than meniscal transplants implanted by open surgery. The clinical relevance remains to be determined


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_18 | Pages 1 - 1
1 Dec 2018
Turnbull G Shu W Picard F Riches P Clarke J
Full Access

Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater. As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers. Mesenchymal stem cells (MSCs) seeded onto polycaprolactone scaffolds with defined pore sizes and porosity maintained viability over a 7-day period, with addition of alginate hydrogel and scaffold surface treatment with NaOH increasing cell adhesion and viability. MSC-laden alginate constructs produced via extrusion bioprinting also maintained structural integrity and cell viability over 7 days in vitro culture. Growth within osteogenic media resulted in successful osteogenic differentiation of MSCs within scaffolds compared to controls (p<0.001). MSC spheroids were also successfully created and bioprinted within a novel, supramolecular hydrogel with tunable stiffness. In conclusion, 3D constructs capable of supporting osteogenic differentiation of MSCs were biofabricated via FDM and extrusion bioprinting. Future work will look to increase osteochondral construct size and complexity, whilst maintaining cell viability


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 426 - 426
1 Sep 2012
Keck J Kienle K Siebenrock K Steppacher S Werlen S Mamisch TC
Full Access

Purpose. The purpose of this retrospective study was to investigate the acetabular morphology of pincer impingement hips in order to better understand damage pattern in these patients. We compared MRI measurements made at different postions from anterior to posterior on the acetbulum in patients with pure pincer type FAI to those made in patients with pure cam-type to collect parameters that may be useful in the diagnosis and classification of pincer impingement. Material and Methods. From an initial consecutive retrospective population of 1022 patients that underwent MRI with clinical impingement signs 78 hips which were selected with as clear cam (n=57) or pincer (n=21) impingement on plain radiographics. On these MR Imaging was performed with a 1.5-Tesla system. For analysis, a lateral angle of overcoverage on coronal MRI (MR_LCE), the MR extrusion index and the alpha angle (after Nötzli) were used. In addition to these the gamma angle, the acetabular depth and the angle of lateral acetabular overcoverage were described clock-wise on 7 radial slides from anterior to posterior. These were compared between the cam and pincer population using students-t-test. Measurements were obtained by two observers and inter-observer variability was assessed. Results. The acetabular depth showed in all 7 positions significant smaller values for pincer-type in comparison to cam-type impingement. Highest difference was found is superior-posterior position. The acetabular angle is also significant smaller for pincer than for cam in all radial positions. Highest difference of the acetabular angle is located in superior (pincer −102.93°/cam 109.62°) and anterior-superior position (pincer 102.48°/cam 108.77 °). The gamma angle showed significant differences in all radial positions except anterior position. The highest difference is located in superior-posterior position (pincer 86.18 °/cam 08.77°). The mean MR extrusion index was significant lower for pincer type (12.73%) compared to cam-type patients (17.76%) (p=0.004). LCE angle and extrusion index on MRI displayed a Person correlation coefficient of 0.920. The correlation of the acetabular depth and angle was 0.638. Conclusion. There are several morphological differences between pincer and cam acetabuli: They are significantly deeper in all radial positions than cam hips. They tend to have greater retroversion and have smaller gamma angles. Our results suggest that the superior-posterior quadrant displays greater coverage in pincer hips than cam hips, and therefore damage to the labrum and cartilage surface may extend further into the posterior portion of the acetabulum in pincer hips than in cam hips


Bone & Joint Open
Vol. 5, Issue 6 | Pages 457 - 463
2 Jun 2024
Coviello M Abate A Maccagnano G Ippolito F Nappi V Abbaticchio AM Caiaffa E Caiaffa V

Aims

Proximal femur fractures treatment can involve anterograde nailing with a single or double cephalic screw. An undesirable failure for this fixation is screw cut-out. In a single-screw nail, a tip-apex distance (TAD) greater than 25 mm has been associated with an increased risk of cut-out. The aim of the study was to examine the role of TAD as a risk factor in a cephalic double-screw nail.

Methods

A retrospective study was conducted on 112 patients treated for intertrochanteric femur fracture with a double proximal screw nail (Endovis BA2; EBA2) from January to September 2021. The analyzed variables were age, sex, BMI, comorbidities, fracture type, side, time of surgery, quality of reduction, pre-existing therapy with bisphosphonate for osteoporosis, screw placement in two different views, and TAD. The last follow-up was at 12 months. Logistic regression was used to study the potential factors of screw cut-out, and receiver operating characteristic curve to identify the threshold value.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 117 - 117
1 Sep 2012
Vukasinovic Z Spasovski D
Full Access

We present the results of Chiari pelvic osteotomy in the treatment of adolescent hip incongruence, with special interest in identifying possibilities, limitations and complications. In a series of 86 patients treated by Chiari pelvic osteotomy (13 operated bilateraly) at the Institute for Orthopaedic Surgery “Banjica” with a follow-up period more than 48 months, we analyzed the relation of Chiari-specific parameters collected from postoperative radiograms (osteotomy angle and heigth, and displacement index) to various preoperative and postoperative parameters (Sharp acetabular angle, Wiberg CE angle, Heyman and Herndon femoral head extrusion index (FHEI), Acetabular depth ratio (ADR), Shenton-Menard arch integrity, limb length discrepancy, gait quality) and functional result according to HHS and McKay scoring systems. We found highly significant improvements of Sharp angle (from 47.2±6.1° preoperatively to 38.6±7.8° finally, p<0.01), Wiberg CE angle (from 10.2±16.8° to 38.9±14.6°, p<0.01) and FHEI (from from 53.4±21% to 1.9±70.7%, p<0.01). In adition, HHS was also improved from 76±15.1 to final 87.9±9.4, p<0.01). We also assessed the satisfaction of both patients (index 4.2 out of 5) and surgeons (index 3.7 out of 5). Chiari pelvic osteotomy is useful surgical procedure in the selected cases of adolescent hip incongruence with disturbance of hip centering and coverage


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 856 - 863
1 Aug 2000
Sanchez-Sotelo J Munuera L Madero R

We performed a prospective, randomised study on 110 patients more than 50 years old with fractures of the distal radius to compare the outcome of conservative treatment with that using remodellable bone cement (Norian skeletal repair system, SRS) and immobilisation in a cast for two weeks. Patients treated with SRS had less pain and earlier restoration of movement and grip strength. The results at one year were satisfactory in 81.54% of the SRS patients and 55.55% of the control group. The rates of malunion were 18.2% and 41.8%, respectively. There was a significant relationship between the functional and radiological results. Soft-tissue extrusion was present initially in 69.1% of the SRS patients; most deposits disappeared progressively, but persisted in 32.73% at one year. We conclude that the injection of a remodellable bone cement into the trabecular defect of fractures of the distal radius provides a better clinical and radiological result than conventional treatment


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 1002 - 1008
1 Aug 2019
Al-Hourani K Stoddart M Khan U Riddick A Kelly M

Aims

Type IIIB open tibial fractures are devastating high-energy injuries. At initial debridement, the surgeon will often be faced with large bone fragments with tenuous, if any, soft-tissue attachments. Conventionally these are discarded to avoid infection. We aimed to determine if orthoplastic reconstruction using mechanically relevant devitalized bone (ORDB) was associated with an increased infection rate in type IIIB open tibial shaft fractures.

Patient and Methods

This was a consecutive cohort study of 113 patients, who had sustained type IIIB fractures of the tibia following blunt trauma, over a four-year period in a level 1 trauma centre. The median age was 44.3 years (interquartile range (IQR) 28.1 to 65.9) with a median follow-up of 1.7 years (IQR 1.2 to 2.1). There were 73 male patients and 40 female patients. The primary outcome measures were deep infection rate and number of operations. The secondary outcomes were nonunion and flap failure.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 836 - 841
1 Jun 2015
Jónsson BY Mjöberg B

A total of 20 patients with a depressed fracture of the lateral tibial plateau (Schatzker II or III) who would undergo open reduction and internal fixation were randomised to have the metaphyseal void in the bone filled with either porous titanium granules or autograft bone. Radiographs were undertaken within one week, after six weeks, three months, six months, and after 12 months.

The primary outcome measure was recurrent depression of the joint surface: a secondary outcome was the duration of surgery.

The risk of recurrent depression of the joint surface was lower (p < 0.001) and the operating time less (p < 0.002) when titanium granules were used.

The indication is that it is therefore beneficial to use porous titanium granules than autograft bone to fill the void created by reducing a depressed fracture of the lateral tibial plateau. There is no donor site morbidity, the operating time is shorter and the risk of recurrent depression of the articular surface is less.

Cite this article: Bone Joint J 2015; 97-B:836–41