Advertisement for orthosearch.org.uk
Results 1 - 20 of 90
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice. Method. OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted. Result. OARSI scoring confirmed OA induction 4 weeks post-DMM surgery, with forced exercise exacerbating cartilage degradation regardless of intensity. No significant genotype-dependent differences were observed. Serum analysis revealed elevated cytokine levels associated with OA and inflammation in KO mice compared to WT mice 4 and 8 weeks post-surgery (VEGF-A, MCP-1, CXCL10, RANTES, MIP1-alpha, MIP1-beta, and RANKL). The observed effects were often exacerbated by intense exercise but rarely by DMM surgery. NanoCT analysis demonstrated increased sclerotic bone changes after 6 weeks of forced exercise in KO mice compared to WT mice. Conclusion. Our results suggest an OA promoting effect of exercise in early disease stages of posttraumatic OA. Intense exercise induced inflammatory processes correlated to increased cytokine levels in the serum that might exacerbate OA pathogenesis in later stages. The neuropeptide alpha-CGRP might play a role in protecting against these adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 45 - 45
14 Nov 2024
Kjeldsen T Thorgaard Skou S Dalgas U Tønning L Birch S Frydendal T Varnum C Garval M G Ingwersen K Mechlenburg I
Full Access

Introduction. Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants randomized controlled trials providing evidence for the optimal exercise program in Hip OA. The aim of this trial was to investigate whether progressive resistance training (PRT) is superior to neuromuscular exercise (NEMEX) for improving functional performance, hip pain and hip-related quality of life in patients with hip OA. Method. This was a multicenter, cluster-randomized, controlled, parallel-group, assessor-blinded, superiority trial. 160 participants with clinically diagnosed hip OA were recruited from hospitals and physiotherapy clinics and randomly assigned to twelve weeks of PRT or NEMEX. The PRT intervention consisted of 5 high-intensity resistance training exercises targeting muscles at the hip and knee joints. The NEMEX intervention included 10 exercises and emphasized sensorimotor control and functional stability. The primary outcome was change in the 30-second chair stand test (30s-CST). Key secondary outcomes were changes in scores on the pain and hip-related quality of life (QoL) subscales of the Hip Disability and Osteoarthritis Outcome Score (HOOS). Result. The mean changes from baseline to 12-week follow-up in the 30s-CST were 1.5 (95% CI, 0.9 to 2.1) chair stands with PRT and 1.5 (CI, 0.9 to 2.1) chair stands with NEMEX (difference, 0.0 [CI, 0.8 to 0.8] chair stands). For the HOOS pain subscale, mean changes were 8.6 (CI, 5.3 to 11.8) points with PRT and 9.3 (CI, 5.9 to 12.6) points with NEMEX. For the HOOS QoL subscale, mean changes were 8.0 (CI, 4.3 to 11.7) points with PRT and 5.7 (CI, 1.9 to 9.5) points with NEMEX. Conclusion. In patients with hip OA, PRT is not superior to NEMEX for improving functional performance, hip pain, or hip-related QoL


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective. Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified. Materials and Methods. Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed. Results. Age-related downregulation of tenocyte marker genes (Tenomodulin), genes related to matrix modelling and remodeling (Collagen type 1, Collagen type 3, Elastin, Biglycan, Fibronectin, Tenascin C), and Transforming growth factor beta 3 (Tgfb3) were detected in tendons from HCR and LCR. Furthermore, inflammatory marker Cyclooxygenase 2 (Cox2) was downregulated, while Microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in tendons from old HCR and old LCR. No significant alteration was seen in Interleukin 6 (Il6), Interleukin 1 beta (Il1b), and Tumor necrosis factor alpha (Tnfa). Histological analysis revealed that Achilles tendons of old rats had fewer and more elongated tenocyte nuclei compared to young rats, indicating a reduced metabolic activity. Even though higher content of glycosaminoglycans as a sign of degeneration was found in tendons of old HCR and LCR, no further signs of tendinopathy were detectable in histological evaluation. Conclusions. Overall, aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue, while low intrinsic exercise capacity did not cause any changes. Even though tendinopathy was not present in any of the groups, some of the shown age-related changes correspond to single characteristics of chronic tendon disease. This study gives an insight into tendon aging and its contribution to molecular and cellular changes in Achilles tendon tissue


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 14 - 14
1 Oct 2015
Carroll C Huynh R Volper B Arthur K Sorensen M Magnusson S Hale T
Full Access

Introduction. Exercise increases tendon collagen synthesis and cross-link formation. Exercise also increases the expression of TGF-β. 1. TGF-β. 1. may contribute to the upregulation of tendon collagen synthesis during exercise, but this relationship has not been established in vivo. The purpose of this study was to evaluate the effects of TGF-β. 1. receptor inhibition on tendon collagen. Materials and Methods. Male Wistar rats were divided into sedentary (SED, n = 9) or exercised (RUN, n=15) groups. Exercised animals completed four days of treadmill exercise (60 minutes/days). The peritendinous space of one Achilles tendon was injected with LY-364947 (ALK5 inhibitor; INHIB) while the opposite leg was injected with a vehicle (SHAM). Injections were given daily after each exercise bout. ERK and Smad 2/3 phosphorylation was evaluated by Western blotting. Collagen I and III gene expression were evaluated via qRT-PCR. Tendon hydroxyproline and hydroxylyslpyridinoline (HP) cross-linking were assayed via HPLC. A longitudinal section of tendon was stained with H&E for evaluation of cell numbers and fibril organization. Results. Phosphorylation of ERK increased by 2.5-fold in both legs given LY-364947 (p<0.05) but was not influenced by exercise (p>0.05). Smad 3 phosphorylation was reduced (p<0.05) in tendons treated with LY-364947. Neither type I nor type III collagen gene expression was affected by TGF-β. 1. receptor inhibition or exercise (p>0.05). Collagen content was not altered by either exercise or LY-364947 (p>0.05). HP cross-linking was 3-fold lower in the RUN-INHIB when compared to the RUN-SHAM tendon (p<0.05). No effect of inhibitor on HP was noted in the sedentary animals. Cell density was greater (p<0.05) in the Achilles tendon of exercised animals (SED: 7.5 cell/100 μm. 2. , RUN: 10.3 cell/100 μm. 2. ) but was not influenced by TGF-β. 1. receptor inhibition (p>0.05). Fiber structure scores were 45% lower (p<0.07) in SED animals treated with inhibitor but normal in RUN animals given inhibitor. Discussion. The changes in ERK and Smad phosphorylation suggest that LY-364947 was effective at altering TGF-β. 1. signaling. Our data suggest that neither acute exercise nor TGF-β. 1. receptor inhibition altered collagen gene expression. In contrast, TGF-β. 1. appears to be important for regulating Achilles tendon cross-link formation during exercise training and inhibition of TGF-β. 1. impacts fiber structure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 58 - 58
1 Apr 2017
Lorente R Fernández-Pineda L Burgos J Antón-Rodrigálvarez L Hevia E Pérez-Encinas C Barrios C
Full Access

Background. After surgical correction of thoracic scoliosis, an improvement in the cardio-respiratory adaptation to exercise would be expected because of the correction of the rib cage associated with the spinal deformity. This work intended to evaluate the physiologic responses to incremental exercise in patients undergoing surgical correction of adolescent idiopathic scoliosis (AIS). The hypothesis of this study was that the exercise limitations described in patients with AIS could be related with the physical deconditioning instead of being linked to the severity of the vertebral deformity. Methods. Cross-sectional study of the exercise tolerance in a series of patients with AIS type Lenke 1A, before and 2 years after surgical correction. Twenty patients with AIS and 10 healthy adolescents aged between 12 and 17 years old were evaluated. The average magnitude of the curves was 60.3±12.9 Cobb. Cardio-respiratory function was assessed before surgery and at 2-year follow-up by maximal exercise tolerance test on treadmill following a Bruce standard protocol. Maximal oxygen uptake (VO2), VCO2, expiratory volume (VE), and VE/VO2 ratio were registered. Results. Before surgery, AIS patients showed lower values than healthy controls in all cardio-respiratory parameters. The most important restrictions were the VO2max in ml/kg/min. (30.3±5.4 vs 49.9±7.5), VE (43.2±10.3 vs 82.3±10.7) and VE/CO2 ratio (25.0±3.9 vs 29.6±4.2). Contrary to expectations, two years after surgery most of these parameters decreased but differences with preoperative data were no statistically significant. Besides the great correction of the deformity (coronal plane, 71.5%; axial rotation, 49.3%), the cardio-respiratory tolerance to the exercise was not modified by surgery. Conclusions. Patients with moderate-severe AIS showed a limited tolerance to maximal exercise that does not change 2 years after surgery. This findings suggests that the reduced cardio-pulmonary function during exercise is not strictly associated to the spinal deformity, since great corrections of the spinal curves does not improve functional ventilatory parameters. In addition, the results point out a severe exercise deconditioning in AIS patients. Level of evidence. Level IV


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 31 - 31
1 Oct 2015
Carroll C Astill B Arthur K Katsma M Curtis D
Full Access

Introduction. Tendon cross-sectional area (CSA) and stiffness increase in men during chronic exercise. The increase in tendon CSA and stiffness is not evident in women. In men, exercise increases tendon production of MMPs, IGF-1, and IL-6, which presumably contribute to tendon remodeling during chronic exercise. The purpose of this study was to determine if exercise-induced production of MMPs, IGF-1, and IL-6 are limited in women when compared to men. Materials and Methods. Young men (n=9, 27±1 y) and women (n=8, 26±1 y) performed a single bout of calf press exercise (8 sets of 15 repetitions at 70% of 15-RM). A microdialysis fiber (3000 kDa cut-off) was inserted into the space anterior to the Achilles tendon immediately after exercise and during a control experiment. All proteins were evaluated with ELISA kits. Results. In men IGF-I increased with exercise at 3 (p<0.05) but not 4 hrs. IGF-1 was not elevated at any measured time points in women. IL-6 increased with exercise to a similar extent in men and women at 3 hrs (p<0.05) but values returned to baseline at 4 hrs. MMP-9 increased with exercise at both 2 and 5 hours (p<0.05) in men but not in women. MMP-2 increased with exercise at 2 and 5 hrs to a similar extent in both men and women (p<0.05). In men TIMP-1 increased with exercise at 2 (p<0.05) but not 5 hrs. In women, TIMP-1 levels were elevated post-exercise at both 2 and 5 hrs (p<0.05). Discussion. In men, resistance exercise resulted in a modest and transient increase in tendon production of IGF-1 and IL-6. In women, this is only evident for IL-6. MMP-2 and MMP-9 increased with exercise in men. The exercise-induced increase in MMP-9 was not seen in women. In contrast, MMP-2 increased in women to a comparable magnitude as men. TIMP-1 increased with exercise in men and women but remained elevated out to 5 hrs in women only. The blunted increase in IGF-1 and MMP-9 and a prolonged increase in TIMP-1 may contribute to the lack of tendon adaptations after chronic training in women when compared to men


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 119 - 119
1 Dec 2020
Giacomo GD Ambrosio L Cicione C Tilotta V Papalia R Vadalà G Denaro V
Full Access

In the last decade, skeletal muscle has been recognized as an endocrine organ able to release molecules that may act as paracrine or endocrine factors, namely myokines. Among these, irisin is secreted upon muscle contraction after physical exercise (PE) and has been demonstrated to yield anabolic effects on different cell types. Recently, irisin has been shown to improve cortical bone mass, geometry and strength, hence resembling the effect of PE. It has also been reported that irisin levels in the serum and synovial fluid of patients with knee osteoarthritis (OA) were negatively correlated with OA severity. Therefore, we hypothesized that irisin may improve cartilage metabolism and blunt the osteoarthritic process. Human osteoarthritic chondrocytes (hOAC) were isolated from osteochondral specimens of patients undergoing total knee joint replacement. After in vitro expansion, hOAC were put in a three-dimensional culture system (alginate beads) and treated with either phosphate-buffered saline (control) or irisin (25 ng/mL). After 1 week, the amount of glycosaminoglycans (GAG) was evaluated using dimethylmethylene blue (DMMB) and PicoGreen assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect interleukin (IL)-1 and -6, matrix metalloproteinase (MMP)-1 and -13, inducible nitric oxide synthase (iNOS) and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -3 gene expression levels. hOAC treated with irisin showed a significant higher GAG content compared to the control group (p < 0.01). Moreover, irisin was able to reduce the expression of catabolic (MMP-1, -13, iNOS) and pro-inflammatory (IL-1, IL-6) markers, while incrementing the expression of TIMP-1 and -3 (p < 0.001). Our results showed that irisin was able to stimulate GAG synthesis and diminish extracellular matrix catabolism in hOAC, demonstrating the existence of a cross-talk between cartilage and muscle possibly supporting the beneficial role of PE on cartilage homeostasis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 4 - 4
1 Mar 2013
McCarthy I Kostic D Hu X Tan W Sathiananda S Cohen H Wolman R
Full Access

We have studied patients with Joint Hypermobility Syndrome (JHS) admitted to the Royal National Orthopaedic Hospital (RNOH) for a three-week in-patient rehabilitation programme. Ten patients were investigated at the start and end of this programme, and so far eight patients have been followed up at three months review. Postural stability was measured using a force plate, and the path of the centre of force (CoF) was tracked while patients were asked to attempt a series of more challenging tasks: double leg stance with eyes open and then with eyes closed, followed by single leg stance with eyes open and closed. Patients also completed a number of questionnaires at the same time points. We found the results of the double stance eyes closed test of postural stability to be the most informative. The ellipse area (EA) containing 95% of the points of the path of the CoF decreased from 21.5 + 14.8 cm2 to 9.0 + 11.5 cm2 over the course of the in-patient programme. In the eight patients followed up at three months, EA has remained the same (9.6 + 14.6 cm2). We conclude that the effects of the exercise programme and advice on subsequent exercise can be maintained over three months


Abstract. Objectives. To determine the effects of self-management interventions (SMIs) including an exercise component (EC) on low back pain (LBP) and disability and to determine whether SMIs with tailored exercises (TEs) have superior outcomes compared to SMIs with general exercises (GEs). Methods. An electronic systematic search of randomized controlled trials (RCTs) was performed in 5 electronic databases. RCTs compared SMIs with an EC to control interventions. Data were extracted at 3 follow-up points (short-term, intermediate and long-term) and meta-analyses were performed. Reviewed RCTs were divided into subgroups based on whether the EC was tailored or generic. A subgroup meta-analysis was performed at the short-term follow-up to assess whether the SMIs with TEs have superior outcomes compared to SMIs with GEs. Results. 12 original RCTs were included in the review (six including SMIs with TEs) and were of moderate quality. The pooled results revealed the effect sizes (ESs) of −0.26,-0.32 and −0.21 for short, intermediate and long-term pain intensity, respectively and −0.26,-0.22 and −0.21 for short, intermediate, and long-term disability, respectively (negative value indicates a mean difference in favour of SMIs) indicating a moderate but significant reduction in pain and disability compared to controls. Subgroup meta-analysis at the short-term follow-up revealed that SMIs with TEs had ES of –0.19(p=0.004) for pain and –0.20(p=0.002) for disability compared to SMIs with GEs demonstrating positive but not significant improvement in pain (ES −0.48, p=0.09) and disability (ES −0.45, p=0.10). Conclusions. There is moderate quality evidence for SMIs with an EC to have moderate but significant positive effect on pain and disability in people with LBP. The subgroup analysis revealed that SMIs with exercises tailored to person's needs are superior in reducing pain and disability. These results indicate the importance of developing TE solutions supporting self-management to improve its effect on pain and disability in LBP patients. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 29 - 29
1 Oct 2015
Walters Y Lederman E Mohagheghi A McCarthy I Birch H
Full Access

Introduction. Regular, repeated stretching increases joint range of movement (RoM), however the physiology underlying this is not well understood. The traditional view is that increased flexibility after stretching is due to an increase in muscle length or stiffness whereas recent research suggests that increased flexibility is due to modification of tolerance to stretching discomfort/pain. If the pain tolerance theory is correct the same degree of micro-damage to muscle fibres should be demonstrable at the end of RoM before and after a period of stretch training. We hypothesise that increased RoM following a 3 weeks hamstrings static stretching exercise programme may partly be due to adaptive changes in the muscle/tendon tissue. Materials and Methods. Knee angle and torque were recorded in healthy male subjects (n=18) during a maximum knee extension to sensation of pain. Muscle soreness (pain, creatine kinase activity, isometric active torque, RoM) was assessed before knee extension, and 24 and 48 hours after maximum stretch. An exercise group (n=10) was given a daily home hamstring stretching programme and reassessed after 3 weeks and compared to a control group (n=8). At reassessment each subject's hamstring muscles were stretched to the same maximum knee extension joint angle as determined on the first testing occasion. After 24 hours, a reassessment of maximum knee extension angle was made. Results. At the start of the study RoM was 71.3 ± 10.0 degrees and there was no significant difference between groups. After 3 weeks stretching RoM increased significantly (p=0.01) by 9 degrees; the control group showed no change. Stiffness did not differ for either group. Pain score and RoM were the most sensitive markers of muscle damage and were significantly changed 24 and 48 hours after the initial stretch to end of range, (p<0.005) and (p=0.004) respectively. Discussion. The results show that a 3 week stretching programme causes muscle adaptation resulting in an increase in the extensibility of the hamstring muscle/tendon unit but no change in stiffness. The lack of evidence of muscle damage suggests that participants in the stretching group are likely to have undergone a physical change/adaptation rather than simply an increase in pain threshold


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 25 - 25
1 Jan 2013
McGregor A Doré C Morris T Morris S Jamrozik K
Full Access

Introduction

This study sought to determine whether the functional outcome of two common spinal operations could be improved by a programme of post-operative rehabilitation and/or an educational booklet each compared with usual care.

Methods

This was a multi-centre, factorial, randomised controlled trial on the post operative management of spinal surgery patients, with randomisation stratified by surgeon and operative procedure. The study compared the effectiveness of a rehabilitation programme and an education booklet for the postoperative management of patients undergoing discectomy or lateral nerve root decompression surgery, each compared with “usual care” using a 2 × 2 factorial design, randomising patient to four groups; rehabilitation-only, booklet-only, rehabilitation-plus-booklet, and usual care only. The primary outcome measure was the Oswestry Disability Index (ODI) at 12 months, with secondary outcomes including visual analogue scale measures of back and leg pain. An economic analysis was also performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 39 - 39
1 Dec 2022
Vadalà G Di Giacomo G Ambrosio L Cicione C Tilotta V Russo F Papalia R Denaro V
Full Access

Introduction:. Exercise has showed to reduce pain and improve function in patients with discogenic low back pain (LBP). Although there is currently no biologic evidence that the intervertebral disc (IVD) can respond to physical exercise in humans, a recent study has shown that chronic running exercise is associated with increased IVD hydration and hypertrophy1. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types, including chondrocytes2. This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs). Our hypothesis is that irisin may improve hNPCs metabolism and proliferation. METHODS:. The hNPCs, isolated from discectomy surgical waste material (n = 5), were expanded and encapsulated in alginate beads. The hNPCs were treated with: i) only growth medium (control); ii) medium with recombinant irisin (r-IR) at different concentrations (5, 10 and 25 ng / mL); iii) medium with Interleukin-1β (IL1β); iv) medium with IL1β for 24 h and then with IL1β and r-IR; v) medium with r-IR for 24 h and then with r-IR and IL1 β. We evaluated proliferation (trypan blue and PicoGreen), metabolic activity (MTT), nitrite concentration (Griess), and expression levels of catabolic and anabolic genes via real-time polymerase chain reaction (qPCR). Each analysis was performed in triplicate for each donor and each experiment was performed three times. Data were expressed as mean ± S.D. One-way ANOVA was used for the groups under exam. RESULTS:. Irisin increased hNPCs proliferation (p < 0.001), metabolic activity at 10 ng/mL (p < 0.05), and GAG content at concentration of 10 ng/mL and 25 ng/mL (p < 0.01; p < 0.001, respectively). The production of nitrites, used as an indicator of cellular oxidative stress, was significantly decreased (p < 0.01). Gene expression levels compared to the control group increased for COL2A1 (p < 0.01), ACAN (p < 0.05), TIMP-1 and −3 (p < 0.01), while a decrease in mRNA levels of MMP-13 (p < 0.05) and IL1β (p < 0.001) was noticed. r-IR pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p < 0.001), as well as a decrease of IL-1β (p < 0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-IR led to an increment of hNPC metabolic activity (p < 0.001), COL2A1 gene expression (p < 0.05) and a reduction of IL-1β (p < 0.05) and ADAMTS-5 gene levels (p < 0.01). CONCLUSIONS:. The present study suggested that irisin may stimulate hNPCs proliferation, metabolic activity, and anabolism by reducing the expression of IL-1β and catabolic enzymes while promoting the synthesis of extracellular matrix components. Furthermore, this myokine was able to blunt the catabolic effect of in vitro inflammation. Our results indicate that irisin may be one of the mediators by which physical exercise and muscle tissues modulate IVD metabolism, thus suggesting the existence of a biological cross-talk mechanism between the muscle and the IVD


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 75 - 75
14 Nov 2024
Khalid T Shlomo YB Bertram W Culliford L enderson E Jepson M Johnson E Palmer S Whitehouse M Wylde V
Full Access

Introduction. Approximately 20-25% of patients having joint replacement in the UK have moderate-severe frailty. Frailty is associated with poorer outcomes after joint replacement. Targeting frailty pre-operatively with exercise and protein supplementation could improve post-operative outcomes. Prior to conducting a randomised controlled trial (RCT), a feasibility study was necessary to inform trial design and delivery. Method. We conducted a randomised feasibility study with embedded qualitative work. Patients aged ≥65 years, frail and undergoing THR or TKR were recruited from three UK hospitals. Participants were randomly allocated on a 1:1 ratio to the intervention or usual care group. The intervention group had a 1:1 appointment with a physiotherapist and were provided with a home-based, tailored daily exercise programme and a daily protein supplement for 12 weeks before their operation, supported by six telephone calls from a physiotherapist. Questionnaires were administered at baseline and 12 weeks after randomisation. Interviews were conducted with 19 patients. Feasibility outcomes were eligibility and recruitment rates, intervention adherence, and acceptability of the trial and the intervention. Result. 411 patients were sent a screening pack. Of the 168 patients who returned a screening questionnaire, 79 were eligible and consented to participate, and 64 were randomised. Of the 33 participants randomised to the intervention, 26 attended the intervention appointment. Eighteen participants (69%) received all six intervention follow-up telephone calls. Nineteen participants completed an intervention adherence log; 13 (68%) adhered to the exercise programme and 11 (58%) adhered to the protein supplementation. The overall retention rate was 86% at 12 weeks. The 12-week follow-up questionnaire was returned by 84% of participants who were sent a questionnaire. Interviews found that the trial and intervention were generally acceptable, but areas of potential improvements were identified. Conclusion. This study demonstrated that a larger study is possible and has identified improvements to optimise the design of a RCT


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 129 - 129
14 Nov 2024
Larsen JB Skou ST Laursen M Bruun NH Bandholm T Arendt-Nielsen L Madeleine P
Full Access

Introduction. There is a lack of evidence-based treatments for patients with chronic pain after total knee arthroplasty (TKA). It is well-established that knee extensor and flexor muscle strength are markedly impaired following TKA, but no studies have examined muscle strength and power in patients with chronic pain after TKA. Therefore, the aim was to investigate if neuromuscular exercises and pain neuroscience education (PNE) were superior to PNE alone for improvement of muscle strength and power in patients with chronic pain after TKA. Method. This report presents the exploratory analysis of a randomized controlled trial (NCT03886259). Participants with chronic moderate-to-severe average daily pain intensity and no signs of prosthesis failure at least one year after primary TKA were included. Participants were randomized to receive either supervised neuromuscular exercise and PNE or the same PNE sessions alone. The outcomes were changes from baseline to 12-months for peak leg extension power and maximum muscle strength, measured during maximal voluntary isometric contractions, for the knee extensors and flexors. Result. Sixty-nine participants (age 62.2±7.2, 40 females) were included. No between-group differences were observed for peak leg extension power (difference 13.6 Watts, 95% CI -22.2 to 49.3), maximum knee extensor muscle strength (difference -20.9 Newtons, 95% CI -65.8 to 24.0) or maximum knee flexor muscle strength (difference 8.6 Newtons, 95% CI -11.9 to 29.1). Peak leg extension power (26.3 Watts, 95% CI 4.3 to 48.3) and maximum knee flexor muscle strength (19.7 Newtons, 95% CI 7.6 to 31.9) improved significantly in the neuromuscular exercise and PNE group with no significant improvements observed in the PNE alone group. Conclusion. Neuromuscular exercise and PNE did not improve muscle strength and power compared to PNE alone in patients with chronic pain after TKA. Acknowledgements. This study was funded by the Danish Rheumatism Association, the Svend Andersen Foundation and Lions Club Denmark


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 133 - 133
1 Nov 2021
Mullen M Bahney CS Huard J Ehrhart N
Full Access

Introduction and Objective. Exosomal miRNA have been shown to regulate many myogenic and osteogenic pathways involved in injury repair and healing. It is also known that rehabilitation and exercise can improve muscle mass and bone growth. The mechanisms by which this occurs in vivo are well studied, but the impact exosomes and their associated miRNA cargo have is unclear. With this knowledge and question in mind, we hypothesized that C2C12 myoblasts subjected to in vitro mechanical stimulus (“exercise”) would exhibit improved exosome production and differentially expressed miRNA cargo when compared to their static (“unexercised”) counterparts. Materials and Methods. C2C12 myoblasts were cultured using the FlexCell FX-5000TT bioreactor. Two exercise regimens were programmed: 1) low intensity regimen (LIR) (0–15% strain at 0.5 Hz for 24 hours) 2) high intensity interval regimen (HIIR) (12–22% strain at 1 Hz for 10 minutes followed by 50 minutes of rest repeated for 24 hours). Unexercised (static) cells were cultured in parallel. Exosomes were isolated using the Invitrogen Total Exosome Isolation Reagent. The Pierce BCA Protein Assay, System Bioscience's ExoELISA-ULTRA CD81 Kit and, SBI's ExoFlow-ONE EV labeling kit were used to confirm and quantify exosome number and protein concentration. The SBI Exo-NGS service was used to perform miRNA sequencing on isolated exosomes. Results. All exercise regimens resulted in increased exosome concentrations as determined by CD81 exosome ELISA and flow-cytometry based exosome quantification. The LIR interestingly produced significantly more exosomes than static and HIIR. Within the exosomes from mechanically stimulated cells, 35 miRNAs were found to be differentially expressed when compared to exosomes from unexercised cells. Interestingly, this significance was only found within exosomes from the HIIR group. Specifically, upon investigation 8 of these miRNAs were found to be involved in myogenic and osteogenic proliferation and differentiation. These results correlate with our previous findings that exosomes from exercised cells improve the proliferation and myogenic differentiation of C2C12 myoblasts. Conclusions. Our results indicate that exercise can be optimized to improve the production and regenerative capacity of exosomes. These results also indicate that exosomes may be intimately involved in systemic health and repair during rehabilitation and exercise. To examine these results in vivo, mouse studies using a crush injury model and exosomes from mechanically stimulated cells are currently planned


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 71 - 71
4 Apr 2023
Arrowsmith C Burns D Mak T Hardisty M Whyne C
Full Access

Access to health care, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure low back physiotherapy exercise participation without the direct supervision of a medical professional. The aim of this study was to develop and evaluate the potential for performing automatic, unsupervised video-based monitoring of at-home low back physiotherapy exercises using a single mobile phone camera. 24 healthy adult subjects performed seven exercises based on the McKenzie low back physiotherapy program while being filmed with two smartphone cameras. Joint locations were automatically extracted using an open-source pose estimation framework. Engineered features were extracted from the joint location time series and used to train a support vector machine classifier (SVC). A convolutional neural network (CNN) was trained directly on the joint location time series data to classify exercises based on a recording from a single camera. The models were evaluated using a 5-fold cross validation approach, stratified by subject, with the class-balanced accuracy used as the performance metric. Optimal performance was achieved when using a total of 12 pose estimation landmarks from the upper and lower body, with the SVC model achieving a classification accuracy of 96±4% and the CNN model an accuracy of 97±2%. This study demonstrates the feasibility of using a smartphone camera and a supervised machine learning model to effectively assess at-home low back physiotherapy adherence. This approach could provide a low-cost, scalable method for tracking adherence to physical therapy exercise programs in a variety of settings


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 26 - 26
2 Jan 2024
Legerlotz K
Full Access

As high incidences of tendinopathies are observed particularly in those who intensively use their tendons, we assume that pathological changes are caused, at least partially, by mechanical overload. This has led to the so-called overload hypothesis, explaining the development of tendinopathies by structural failure resulting from excessive load. At the same time, tendon loading is an important part in tendon rehabilitation. Currently, exercise treatment approaches such as eccentric training or heavy load resistance training are widely applied in tendinopathy rehabilitation, with good clinical results such as an improvement in function and a reduction in pain. Particularly those rehabilitative approaches which impose high strains on the tendon may induce an adaptation of the tendon's mechanical properties such as increased tendon stiffness. An increased tendon stiffness is often interpreted as desirable, as it may protect the tendon from overloading and thus prevent future strain injuries. However, the tendinopathic tendon is not necessarily less stiff than the tendon in the contralateral leg and an improvement in tendon stiffness is not necessarily accompanied by an improvement in tendon pain or function. In addition, metabolic factors, resulting e.g. in low-level systemic inflammation, may contribute to pathological tendon tissue changes and are not necessarily affected by an exercise program, while nutritional interventions or dietary supplements may potentially affect tendon cell metabolism. Indeed, dietary supplements have been introduced as an additional therapeutic approach in the treatment of tendinopathies in recent years, and their positive curative effects have been reported for both the general population and athletes. In the management of tendinopathies, it may thus be advisable if therapeutic approaches aim to address both tendon mechanics and tendon metabolism for better treatment effectiveness and a sustainable improvement in pain and function


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 116 - 116
11 Apr 2023
Buettmann E DeNapoli R Abraham L Denisco J Lorenz M Friedman M Donahue H
Full Access

Patients with bone and muscle weakness from disuse have higher risk of fracture and worse post-injury mortality rates. The goal of this current study was to better inform post-fracture rehabilitation strategies by investigating if physical remobilization following disuse by hindlimb unloading improves osteochondral callus formation compared to continued disuse by hindlimb suspension (HLS). We hypothesized that continued HLS would impair callus bone and cartilage formation and that physical rehabilitation after HLS would increase callus properties. All animal procedures were approved by the VCU IACUC. Skeletally mature, male and female C57BL/6J mice (18 weeks) underwent HLS for 3 weeks. Mice then had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). Mice were then either randomly assigned to continued HLS or allow normal physical weight-bearing remobilization (HLS + R). Mice allowed normal cage activity throughout the experiment served as controls (GC). All mice were sacrificed 14-days following fracture with 4-8 mice (male and female) per treatment. Data analyzed by respective ANOVA with Tukey post-hoc (*p< 0.05; # p < 0.10). Male and female mice showed conserved and significant decreases in hindlimb callus bone formation from continued HLS versus HLS + R. Combining treatment groups regardless of mouse sex, histological analyses using staining on these same calluses demonstrated that HLS resulted in trends toward decreased cartilage cross-sectional area and increased osteoclast density in woven bone versus physically rehabilitated mice. In support of our hypothesis, physical remobilization increases callus bone formation following fracture compared to continued disuse potentially due to increased endochondral ossification and decreased bone resorption. In all, partial weight-bearing exercise immediately following fracture may improve callus healing compared to delayed rehabilitation regimens that are frequently used


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 11 - 11
11 Apr 2023
Di Giacomo G Vadalà G Tilotta V Cicione C Ambrosio L Russo F Papalia R Denaro V
Full Access

The purpose of this study was to evaluate the beneficial effects of r-Irisin (IR) on human primary tenocytes (hTCs) in vitro. Indeed, Irisin is secreted from muscles in response to exercise and mediates many beneficial effects on tissues and organs. Tissue samples (n=3) were analyzed by histology and immunohistochemistry for αVβ5 receptor. hTCs isolated, culture expanded were treated with: 1) RPMI medium as control; 2) IR at different concentrations; 3) IL-1β; 4) pre-treated with IL-1β for 24 h and then co-treated with IR; 5) pre-treated with IR for 24 h and then co-treated with IL-1β. We evaluated: cell metabolic activity (MTT); cell proliferation (trypan blue staining and PicoGreen); nitrite concentration (Griess). The analysis were performed in triplicate for each donor and each experiment was repeated at least three times. Data were expressed as mean ± S.D. One-way ANOVA analysis was used to compare the groups under exam. We found the presence of the αVβ5 receptor on hTCs plasma membrane supporting the potential interaction with irisin. Cell proliferation was significantly increased with IR at 5, 10 and 25 ng/mL. IR 25 ng/mL after IL1β pre-treatment was able to counteract the increase of nitrite production (p < 0.001) compared to the inflamed hTCs (p < 0.01; p < 0.0001), as well as IR at 10 and 25 ng/ml showed a protective role from oxidative damage. We observed a significant increase in cell metabolic viability in culture under IR at 5 and 25 ng/mL (p < 0.001; p < 0.05) in the pre-treated IR groups, whereas IR showed anti-inflammatory effects at the highest concentration of r-Irisin (p < 0.05). This is the first study reporting the capability of irisin to attenuate tendinopathy in vitro by acting on acute inflamed tenocytes. Our results confirmed and highlighted the potential cross-talk mechanism between muscle and tendon