Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing. Results. SLPI improved the migration ability of BMSCs and upregulated the expression of genes related to osteogenic differentiation of BMSCs in vitro. In vivo, the SLPI group had higher histological scores at the tendon-bone interface by histological evaluation. Micro-CT showed more new bone formation and bone ingrowth around the grafted tendon in the SLPI group.
Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs).Objectives
Methods