Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 57 - 57
1 Jul 2020
Grant M Mwale F Antoniou J Bergeron S Karaplis A Panda D
Full Access

Osteoarthritis (OA) is a debilitating disease and the most common joint disorder worldwide. Although the development of OA is considered multifactorial, the mechanisms underlying its initiation and progression remain unclear. A prominent feature in OA is cartilage degradation typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II). Cartilage homeostasis is maintained by the anabolic and catabolic activities of chondrocytes. Prolonged exposure to stressors such as mechanical loading and inflammatory cytokines can alter the phonotype of chondrocytes favoring cartilage catabolism, and occurs through decreased matrix protein synthesis and upregulation of catabolic enzymes such as aggrecanases (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). More recently, the endoplasmic reticulum (ER) stress response has been implicated in OA. The ER-stress response protects the cell from misfolded proteins however, excessive activation of this system can lead to chondrocyte apoptosis. Acute exposure of chondrocytes to IL-1β has been demonstrated to upregulate ER-stress markers (GADD153 and GRP78), however, it is unclear whether the ER-stress response plays a role on chronic IL-1β exposure. The purpose of this study was to determine whether modulating the ER stress response with tauroursodeoxycholic acid (TUDCA) in human OA chondrocytes during prolonged IL-1β exposure can alter its catabolic effects. Articular cartilage was isolated from donors undergoing total hip or knee replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase, and expanded in DMEM-low glucose supplemented with 10% FBS. Chondrocytes were expanded in flasks for one passage before being prepared for micropellet culture. Chondrocyte pellets were cultured in regular growth medium (Control), medium supplemented with IL-1β [10 ng/mL], TUDCA [100 uM] or IL-1β + TUDCA for 12 days. Medium was replaced every three days. Cartilage explants were prepared from the donors undergoing knee replacement, and included cartilage with the cortical bone approximately 1 cm2 in dimension. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. RNA was extracted using Geneaid RNA Mini Kit for Tissue followed by cDNA synthesis. QPCR was performed using Cyber Green mastermix and primers for the following genes: ACAN (aggreacan), COL1A1, COL2A1, COL10A1, ADAMTS-4, ADAMTS-5, MMP-3, and MMP-13, on an ABI 7500 fast qPCR system. Although IL-1β did not significantly decrease the expression of matrix proteins, it did increase the expression of ADAMTS-4, −5, and MMP3 and −13 when compared to controls (Kruskal-Wallis, p < 0 .05, n=3). TUDCA treatment alone did not significantly increase the expression of catabolic enzymes but it did increase the expression of collagen type II. When IL-1β was coincubated with TUDCA, the expression of ADAMTS-4, ADAMTS-5, and MMP-13 significantly decreased by ∼40-fold, ∼10-fold, and ∼3-fold, respectfully. We provide evidence that the catabolic activities of IL-1β on human cartilage can be abrogated through modulation of the ER stress response


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 64 - 64
22 Nov 2024
Mbuku RB Poilvache H Van Bambeke F Cornu O
Full Access

Aim. The management of PJIs is slowed down by the presence of bacteria forming biofilms where they may withstand antibiotic therapy. The use of adjuvant strategies, such as hydrolytic enzymes cocktail targeting biofilm matrices and facilitating their dispersion, is a promising option to limit impact of biofilms. Our aim was to evaluate the effect of enzymes cocktail combined with antibiotic dual therapy of rifampicin and vancomycin in a relevant in-vitro model. Method. Mature methicillin-resistant Staphylococcus aureus biofilms were grown on Ti-6Al-4V coupons by adding 1mL of a 8Log10 ATCC 33591 suspension in TGN (TSB + 1% glucose + 2% NaCl) to 24-wells plates containing the coupons and incubating the plates for 24h at 37°C with a continuous 50rpm agitation. The samples were rinsed and placed in 6 wells plates containing 1ml of the enzymatic cocktail (C.D.D.) solution (tris-buffered (pH 7.0) solution of 400 U/ml of aspecific DNA/RNA endonuclease, 50 U/ml of endo-1,4-b-D-glucanase, and 0.06 U/ml of β-N-acetylhexosaminidase). 9ml of TGN or TGN containing antibiotics RIF/VAN (rifampicin 5µg/mL + vancomycin 8µg/mL) at clinically relevant concentrations found locally in bone or joints, was then added and the samples were incubated in identical conditions for 24h. The samples were then recovered and rinsed. CFU counts were obtained by recovering the bacteria with sonication, serial dilutions, and TSA plating. Biomass was determined via crystal violet staining, followed by dye solubilization in acetic acid, and absorbance measurement using a spectrophotometer. Results. Significant reductions in bacterial counts were observed in biofilms exposed to either RIF/VAN or RIF/VAN+CDD, by respectively 2,6 and 3,7Log10 when compared to samples reincubated with TGN alone (p <0.05). Additionally, CFU counts in samples exposed to RIF/VAN+CDD were reduced by 1,1Log10 when compared to those exposed to RIF/VAN (p<0,05). Significant reduction in biomass (-29,8%, p<0.05) was observed for coupons exposed to RIF/VAN+CDD when compared to C.D.D alone (figure 1). Conclusions. The concurrent utilization of enzymes with rifampicin and vancomycin, holds promise as a feasible method to address periprosthetic joint infections (PJIs). For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 64 - 64
1 Dec 2022
Orloff LE Carsen S Imbeault P Benoit D
Full Access

Anterior cruciate ligament (ACL) injuries have been increasing, especially amongst adolescents. These injuries can increase the risk for early-onset knee osteoarthritis (OA). The consequences of late-stage knee OA include structural joint change, functional limitations and persistent pain. Interleukin-6 (IL-6) is a pro-inflammatory biomarker reflecting knee joint healing, and increasing evidence suggests that IL-6 may play a critical role in the development of pathological pain. The purpose of this study was to determine the relationship between subjective knee joint pain and function, and synovial fluid concentrations of the pro-inflammatory cytokine IL-6, in adolescents undergoing anterior cruciate ligament reconstruction surgery. Seven youth (12-17 yrs.) undergoing anterior cruciate ligament (ACL) reconstruction surgery participated in this study. They completed the Pedi International Knee Documentation Committee (Pedi-IKDC) questionnaire on knee joint pain and function. At the time of their ACL reconstruction surgery, synovial fluid samples were collected through aspiration to dryness with a syringe without saline flushing. IL-6 levels in synovial fluid (sf) were measured using enzyme linked immunosorbent assay. Spearman's rho correlation coefficient was used to determine the correlation between IL-6 levels and scores from the Pedi-IKDC questionnaire. There was a statistically significant correlation between sfIL-6 levels and the Pedi-IKDC Symptoms score (-.929, p=0.003). The correlations between sfIL-6 and Pedi-IKDC activity score (.546, p = .234) and between sfIL-6 and total Pedi-IKDC score (-.536, p = .215) were not statistically significant. This is the first study to evaluate IL-6 as a biomarker of knee joint healing in an adolescent population, reported a very strong correlation (-.929, p=0.003) between IL-6 in knee joint synovial fluid and a subjective questionnaire on knee joint pain. These findings provide preliminary scientific evidence regarding the relationship between knee joint pain, as determined by a validated questionnaire and the inflammatory and healing status of the patient's knee. This study provides a basis and justification for future longitudinal research on biomarkers of knee joint healing in patients throughout their recovery and rehabilitation process. Incorporating physiological and psychosocial variables to current return-to-activity (RTA) criteria has the potential to improve decision making for adolescents following ACL reconstruction to reduce premature RTA thereby reducing the risk of re-injury and risk of early-onset knee OA in adolescents


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 15 - 15
1 May 2021
Debuka E Peterson N Fischer B Birkenhead P Narayan B Giotakis N Thorpe P Graham S
Full Access

Introduction. Methoxyflurane can cause hepatotoxicity and nephrotoxicity at anaesthetic doses but has excellent analgesic properties and no nephrotoxic effects in patients without preexisting disease. Approved for use in the UK and Ireland in 2015, it is currently being used in emergency departments for analgesia during fracture reduction. During the Covid emergency, with theatre access severely restricted and many patients unwilling to use inhaled Nitrous oxide, Penthrox had the potential to provide adequate pain relief to aid frame removals and minor procedures in the clinic. Materials and Methods. Patients presenting to the Limb Reconstruction Unit Elective clinic and requiring frame removal or minor procedures were included in the study. Patients with renal, cardiac or hepatic disease, history of sensitivity to fluorinated anaesthetic agents and those on any nephrotoxic or enzyme inducing drugs were excluded. Verbal consent was obtained, the risks and benefits explained and the procedure was done in a side room in the clinic. Besides patient and procedure details, the Visual Analog Score and Richmond Agitation Scale was noted and patient's satisfaction documented. The results were presented as numbers, means and averages. Results. A total of 39 patients were included in the study of which 17 had Ilizarov frames removed, 10 had Hexapod Removals, 9 had heel rings removed and 3 others had an ex fix removed. Eleven patients required/ requested extra pain relief in the form of oral analgesia. All patients were satisfied or very satisfied with the experience. One patient had a wire jam during removal and required a GA for removal. Conclusions. Patient satisfaction was very high (>95%) with good results and allowed frame removals and minor procedures to be done in the clinic during the Covid pandemic. It also cut expenses and has potential for regular future use


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_5 | Pages 1 - 1
1 Mar 2021
Warren J Anis H Klika AK Bowers K Pannu T Villa J Piuzzi N Colon-Franco J Higuera-Rueda C
Full Access

Aim. Despite several synovial fluid biomarkers for diagnosis of periprosthetic joint infection (PJI) have being investigated, point-of-care (POC) tests using these biomarkers are not widely available. Synovial calprotectin has recently been reported to effectively exclude diagnosis of PJI and a novel lateral flow POC test using it has shown potential to be effective. Thus, the aims of this study were to 1) validate calprotectin POC with enzyme linked immunosorbet assay (ELISA) 2) at 2 separate thresholds for PJI diagnosis in total knee arthroplasty (TKA) patients using the 2013 Musculoskeletal Infection Society (MSIS) PJI diagnosis criteria as the gold standard. Method. Intraoperative synovial fluid samples were prospectively collected from 123 patients who underwent revision TKAs (rTKA) at two academic hospitals within the same healthcare system from October 2018 to January 2020. The study was conducted under IRB approval. Included patients followed the hospital standard for their PJI diagnostic work-up. Data collection included demographic, clinical, and laboratory data in compliance with MSIS criteria. Synovial fluid samples were analysed by calprotectin POC and ELISA tests in accordance with manufacturer's instructions. Patients were categorized as septic or aseptic using MSIS criteria by two independent reviewers blinded to calprotectin assay results. The calprotectin POC and ELISA test performance characteristics were calculated with sensitivities, specificities, positive, and negative predicted values (PPV and NPV, respectively) and areas under the curve (AUC) for 2 different PJI diagnosis scenarios: (1) a threshold of >50 mg/L and (2) a threshold of >14 mg/L. Results. According to MSIS criteria, 53 rTKAs were septic while 70 rTKA were aseptic. In the (1) >50 mg/mL threshold scenario, the calprotectin POC and ELISA performance showed 100% agreement with sensitivity, specificity, PPV, NPV, and AUC, respectively, of 98.1%, 95.7%, 94.5%, 98.5%, and 0.969. In the (2) >14 mg/mL threshold scenario, the POC slightly outperformed the ELISA with sensitivity, specificity, PPV, NPV and AUC of 98.1%, 87.1%, 85.2%, 98.4%, and 0.926, respectively (ELISA values were 98.1%, 82.9%, 81.3%, 98.3%, and 0.905, respectively). Conclusions. The calprotectin POC test performed as well as the ELISA at the >50mg/L threshold and was slightly better at the >14 mg/L threshold. The >50 mg/L threshold had a better specificity while maintaining the same sensitivity as the >14 mg/L threshold. This test could be effectively implemented as a rule out test. However, further investigations with larger cohorts are necessary to validate these results


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 331 - 331
1 Mar 2013
Cohen R Skrepnik N
Full Access

Various reports confirm that elevations in serum markers associated with skeletal muscle injury exist and can occur after orthopaedic surgery in the absence of overt clinical manifestations of myocardial injury. The purpose of this study is to measure the influence surgical approach on these serum markers following primary Minimally Invasive THA. Consecutive enrollment of 30 patients into three different groups of 10 was performed. The MIS Modified Watson Jones THA is an approach using an inter-muscular plane, the Mini Posterior is a trans-muscular approach with some muscle detachment and repair, while the MIS II Incision THA is an inter-muscular approach anteriorly and a trans-muscular approach posteriorly. Blood samples for total creatine kinase (CK), creatine phospho-kinase (CPK), and serum myoglobin were obtained at screening and the morning before surgery as a baseline, immediately post-operatively in the recovery room and 8, 16, 24, 36, 48, and 72 hours post-operatively. Hemoglobin and hematocrit was obtained pre-operatively, 16, 36, and 72 hours (±6 hours) post-operatively. Cardiac troponin-I was measured the morning before surgery (pre-operatively) and 16 hours following surgery to monitor any contributory effect of myocardial injury. We report measurable and reproducible trends in serum enzyme levels consistent with skeletal muscle damage due to THA. Troponin-I remained normal in all but one case throughout the entire study indicating no myocardial contribution to measured serum enzyme levels. While these trends may have slight correlation with surgical approach, they were not statistically significant. We conclude that all three procedures do affect serum enzyme markers and are safe from this standpoint, but no surgical approach appears to affect the degree of muscle trauma more or less than another


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 55 - 55
1 Jul 2020
Epure LM Grant M Alaqeel M Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and proteoglycan synthesis in chondrocytes and intervertebral disc cells [1,2]. Recent evidence indicates that Link N activates Smad1/5 signaling in cultured rabbit IVD cells presumably by interacting with the bone morphogenetic protein (BMP) type II receptor [3], however, whether a similar mechanism exists in chondrocytes remains unknown. In this study we determined whether Link N can stimulate matrix production and reverse degradation of human OA cartilage under inflammatory conditions. OA cartilage was obtained from donors undergoing total knee arthroplasty with informed consent. OA cartilage/bone explants and OA chondrocytes were prepared from each donor. Cells were prepared in alginate beads (2×106 cells/mL) for gene expression analysis using qPCR. Cells and cartilage explants were exposed to IL-1β (10ng/ml), human Link N (hLN) (1μg/ml) or co-incubated with IL-1β+hLN for 7 and 21 days, respectively. Media was supplemented every three days. Cartilage/bone explants were measured for total glycosaminoglycan (GAG) content (retained and released) using the dimethylmethylene blue (DMMB) assay. Western blotting was performed to determine aggrecan and collagen expression in cartilage tissue. To determine NFκB activation, Western blotting was performed for detection of P-p65 in chondrocytes cultured in 2D following 10 min exposure of IL-1β in the presence of 10, 100, or 1000 ng/mL hLN. Link N significantly decreased in a dose-dependent manner IL-1β-induced NFκB activation in chondrocytes. Gene expression profiling of matrix proteins indicated that there was a trend towards increased aggrecan and decreased collagen type I expression following hLN and IL-1β co-incubation. HLN significantly decreased the IL-1β-induced expression of catabolic enzymes MMP3 and MMP13, and the neuronal growth factor NGF (p < 0 .0001, n=3). In OA cartilage/bone explants, hLN reversed the loss of proteoglycan in cartilage tissue and significantly increased its synthesis whilst in the presence of IL-1β. Link N stimulated proteoglycan synthesis and decreased MMP expression in OA chondrocytes under inflammatory conditions. One mechanism for Link N in preserving matrix protein synthesis may, in part, be due to its ability in rapidly suppressing IL-1β-induced activation of NF-κB. Further work is needed to determine whether Link N directly inhibits the IL-1β receptor or interferes with NFκB activation through an independent pathway(s)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 54 - 54
1 Jul 2020
Epure LM Grant M Mwale F Antoniou J Bolt A Mann K Chou H
Full Access

Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc. Bovine nucleus pulposus (bNP) and annulus fibrosus (bAF) cells were isolated from bovine caudal tails. Cells were expanded in flasks then prepared for 3D culturing in alginate beads at a density of 1×10. ∧. 6 cells/mL. Beads were cultured in medium supplemented with increasing tungsten concentrations in the form of sodium tungstate [0, 0.5, 5, 15 ug/mL] for 12 days. A modified GAG assay was performed on the beads to determine proteoglycan content and Western blotting for type II collagen (Col II) synthesis. Cell viability was determined by counting live and dead cells in the beads following incubation with the Live/Dead Viability Assay kit (Thermo Fisher Scientific). Cell numbers in beads at the end of the incubation period was determined using Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). Tungsten dose-dependently decreased the synthesis of proteoglycan in IVD cells, however, the effect was significant at the highest dose of 15 ug/mL. (n=3). Furthermore, although tungsten decreased the synthesis of Col II in IVD cells, it significantly increased the synthesis of Col I. Upregulation of catabolic enzymes ADAMTS4 and −5 were also observed in IVD cells treated with tungsten (n=3). Upon histological examination of spines from mice treated with tungsten [15 ug/mL] in their drinking water for 30 days, disc heights were diminished and Col I upregulation was observed (n=4). Cell viability was not markedly affected by tungsten in both bNP and bAF cells, but proliferation of bNP cells decreased at higher concentration. Surprisingly, histological examination of IVDs and gene expression analysis demonstrated upregulation of NGF expression in both NP and AF cells. In addition, endplate capillaries showed increases in CGRP and PGP9.5 expression as determined on histological sections of mouse IVDs, suggesting the development of sensory neuron invasion of the disc. We provide evidence that prolonged tungsten exposure can induce disc fibrosis and increase the expression of markers associated with pain. Tungsten toxicity may play a role in disc degeneration disease


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 56 - 56
1 Jul 2020
Epure LM Grant M Salem O Huk OL Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the proteoglycan content of the cartilage explants as determined by the DMMB assay. The presence of aggrecan and Col II also decreased as a function of calcium, in both the human OA and bovine cartilage explants. When normal and OA chondrocytes were cultured in medium supplemented with increasing concentrations of calcium (0.5–5 mM Ca2+), aggrecan and Col II expression decreased dose-dependently. Surprisingly, increasing Ca2+ did not induce the release of MMP-3, and −13, or ADAMTS-4 and-5 in conditioned media from OA and normal chondrocytes. Interestingly, inhibition of the extracellular calcium-sensing receptor CaSR) reversed the effects of calcium on matrix protein synthesis. We provide evidence that Ca2+ may play a direct role in cartilage degradation by regulating the expression of aggrecan and Col II through activation of CaSR


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 67 - 67
1 Sep 2012
Mwale F Petit A Yao G Antoniou J
Full Access

Purpose. Whilst it is known that oxidative stress can cause early degenerative changes observed in experimental osteoarthritis and that a major drawback of current cartilage and intervertebral disc tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients express type X collagen, a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification), little is known whether the expression of type X collagen in MSCs from OA patients can be related to oxidative stress or inflammatory reactions that occur during this disease. Method. Human MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA. Bone marrow aspirates were processed essentially as previously described. Briefly, non-adherent cells were discarded after 72h of culture and the adherent ones were expanded for 2–3 passages. MSCs from normal donor (control) were obtained from Lonza. Cells were then lysed and protein expression was detected by Western blot using specific antibodies directed against type X collagen, as well as the antioxidant enzymes Mn-superoxide dismutase (MnSOD), catalase (CAT) and glutathione peroxidase-1 (GPx-1) and inflammation related proteins cyclooxygenase-1 (COX-1) and intercellular adhesion molecule-1 (ICAM-1). GAPDH was used as a housekeeping gene and served to normalize the results. Correlations between the expressions of the different proteins were realized using the correlation Z test with StatView (SAS Institute). Results. Results confirmed that type X collagen was over-expressed in MSCs from OA patients when compared to expression in cells of normal donors. MnSOD, CAT, and COX-1 were also over-expressed. Results showed that the expression of MnSOD strongly correlated to the expression of type X collagen (r=0.79; p=0.03). The expression of CAT weakly correlated to the expression of type X collagen (r=0.67; p=0.10) whereas GPx was not expressed in MSCs from OA patients. Regarding inflammatory reaction, results showed that COX-1 expression strongly correlated to type X collagen expression (r=0.77; p=0.004). ICAM-1 was weakly expressed and no correlation with the expression of type X collagen was observed. Interestingly, COX-1 expression was highly correlated to the expression MnSOD (r=0.92; p=0.0001) and the expression of CAT (r=−0.82; p=0.02). Conclusion. We showed that the level of anti-oxidant enzymes correlates with type X collagen expression in MSCs from OA patients. This suggests that oxidative stress may lead to the up-regulation of stem cell hypertrophy. Results also suggest that prostaglandin production though COX-1 activity is associated with anti-oxidant enzyme expression (MnSOD) and hypertrophy (type X collagen expression). Further studies are however necessary to better understand whether the increased expression of these proteins is the cause or the effect of type X collagen over-expression in MSCs from OA patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 28 - 28
1 Dec 2019
Oliveira P Carvalho VC Saconi ES Leonhardt M Kojima KE Silva JS Lima ALLM
Full Access

Aim. To compare outcomes and incidence of adverse events (AE) of colistin versus tigecycline for treatment of patients with carbapenem-resistant Acinetobacter baumannii (CRAB) osteomyelitis. Method. Retrospective study. Records of 111 patients with microbiologically confirmed CRAB osteomyelitis were analyzed. Colistin (34 cases) and tigecycline (31 cases) were the main drugs used for treatment of extremely-drug resistant (XDR) isolates. Patients who received these two antimicrobials were compared according to baseline features (sex, age, length of hospital stay, Charlson index, presence of comorbidities or immunosuppression, previous renal disease, smoking, alcoholism or use of illicit drugs, previous orthopedic surgery on affected limb, topography of infection, classification of osteomyelitis, ASA score, infection related to pressure ulcer or neuropathic foot, presence of implant, need for soft tissue repair or negative pressure therapy and previous antimicrobial use), clinical outcome after 12 months of treatment (remission of infection was considered the favorable outcome; recurrence of infection, amputation and death were considered unfavorable outcomes; loss of follow-up was analyzed separately) and AE during treatment (impaired renal function; liver abnormalities; nausea; skin rash; neurological abnormalities and other events in general). Quantitative variables were described using summary measures and compared using Student's t or Mann-Whitney tests. Qualitative characteristics were described with absolute and relative frequencies and compared using chi-square or exact tests (Fisher's exact or likelihood ratio test). Results. Regarding baseline characteristics, proportion of male patients was higher in the group treated with colistin (p = 0.028). In the group treated with tigecycline, there was a significant predominance of smokers (p = 0.021) and patients with chronic osteomyelitis (p = 0.036). Regarding clinical outcomes after 12 months of treatment, there was no difference between groups. Overall incidence of AE was significantly higher among patients treated with colistin (p=0,047), as well as renal impairment (p = 0.003). Incidence of nausea was higher in patients treated with tigecycline (p = 0.046), but there was no difference between groups in relation to altered liver enzymes and other events. Conclusions. In this retrospective analysis, there was no significant difference between clinical outcomes of patients with CRAB osteomyelitis treated with colistin compared to tigecycline. Although the occurrence of nausea was greater in the group receiving tigecycline, this antimicrobial appeared to have a better safety profile for treatment of osteomyelitis related to XDR A. baumannii


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 166 - 166
1 Sep 2012
Baker J Walsh P Mulhall K
Full Access

Introduction. Matrix metalloproteinases (MMP) play a key role in cartilage degradation in osteoarthritis. Statins are a potential suppressor of MMPs. The aim of this research was to assess the efficacy of Pravastatin in suppressing MMP gene and protein expression in an in vitro model. Methods. We stimulated normal human chondrocytes with IL-1b for 6 hours to induce MMP expression and then treated with Pravastatin (1, 5 & 10 mM) for a further 18 hours. Cells stimulated with IL-1b but not treated with Pravastatin served as controls. Real-time PCR was used to assess expression of MMP-3 and MMP-9 mRNA. MMP enzyme activity was assessed using a fluorescent MMP-specific substrate. Staistical analysis was performed using ANOVA. Results. MMP-3 and -9 mRNA expression was reduced at all concentrations tested with a statistically significant trends in reduction (p=0.002 and < 0.001 respectively). Analaysis of culture supernatants revealed that Pravastatin treatment led to a reduction in total MMP activity but not to a statistically significant degree (p=0.07). Conclusion. We conclude that treatment with Pravastatin of stimulated human chondrocytes leads to a down regulation of selected MMP genes and a reduction in MMP enzyme activity. Our results are further evidence that statins may have a role to play in the treatment of osteoarthritis and other disorders of cartilage degradation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 22 - 22
1 May 2012
J.A. M J.A.H. M J. Q
Full Access

Trauma, including major Orthopaedic Surgery, results in an immuno-inflammatory response which is variable in systemic effects.This response is patient specific. The systemic effects may be exaggerated and cause distal organ damage. This study assesses the effects of elective hip and knee arthroplasty on liver function tests. A prospective study of liver function in 316 patients (168 males and 148 females) undergoing elective total hip and knee joint replacement was undertaken by one surgeon using standardised anaesthetic, surgical and post-operative protocols. Alanine aminotransferase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP) and Gammaglutamyl transpeptidase (GGT) were assessed pre-operatively and at one day, one week and six weeks following surgery. There were 166 hip and 150 knee replacement patients. Of the hip replacements, 35% were cemented, 35% hybrid and 30% cementless. All knee replacements were cemented:. ALT levels (IU) pre-operatively were 20, one day 17, one week 45.5 and at six weeks 17. AST levels (IU) pre-operatively were 21, one day 22, one week 38 and at six weeks 19. ALP levels (IU) pre-operatively were 77, one day 57, one week 88.5 and at six weeks 90. GGT levels (IU) pre-operatively were 24, one day18, one week 68 and at six weeks 29. For all enzymes there was a highly significant (p < 0.001) increase in values at one week. ALT and AST levels had returned to normal and GGT nearly normal at six weeks. ALP, also a bone enzyme, remained elevated at six weeks. There was no significant difference for age or gender. There was no significant difference for cemented, hybrid or cementless hips. Liver function tests become elevated one week following elective joint replacement. This is not related to cement. The cause is probably multifactorial and major likely contributory factors are patients' immuno-inflammatory response and drug effects. Surgeons should be aware of this phenomenon and undertake pre-operative LFT screening routinely


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 121 - 121
1 May 2012
Sonnabend D Smith M Little C
Full Access

R Appleyard, Murray Maxwell Biomechanics Lab, Royal North Shore Hospital, Sydney. The fundamental mechanisms that underlie tendon breakdown are ill understood. There is an emerging hypothesis that altered mechanical strain modulates the metabolism and/or phenotype of tenocytes, disrupting the balance of matrix synthesis and degradation, and that rupture then occurs through an abnormal tendon matrix. The critically regulated genes have not yet been determined. We have developed sheep model in sheep where both stress-deprived and over-stressed areas can be examined in the one tendon, to evaluate the pathological and molecular changes over time. We have also used ‘wild type’ and genetically modified mice to determine the role of specific enzymes and proteoglycans in tendon degeneration. Stress-deprived and over-stressed regions showed classical changes of increased cellularity and vascularity, rounded tenocytes and interfascicular matrix infiltration. These structural changes resolved for up to one year after injury. Resolution was more rapid in over-stressed regions. Irrespective of the initiating stress, proteoglycan staining and chondroid metaplasia increased in tendon with time. There were distinct molecular and temporal differences between regions, which are reviewed here. While tendon degeneration has traditionally been regarded as a single field of change, our studies show that at a molecular level, the injured tendon may be regarded as a number of distinct regions—overloaded and underloaded, adjacent to bone or adjacent to muscle. Each region manifests distinct molecular changes, driven by relevant gene expression. While collagen metabolism in pathological tendon has received much attention, accumulation of proteoglycan is also consistently induced by altered mechanical loading. We suggest that ADAMTS enzymes, which cleave aggrecan, versican and small proteoglycans, may play a significant role in tendon homeostasis and pathology. Regulating proteoglycan turnover may represent a novel target for treating tendon degeneration. We have initiated studies using mesenchymal stem cells (MSC), not to directly augment healing but to modify the molecular pathology in tendon resulting from altered loading. Preliminary data indicates that injection of MSC into an acute tendon defect significantly abrogates the increase in expression of aggrecan and collagen degrading metalloproteinases in the adjacent over-stressed tendon. This may decrease the resultant degeneration. The effects of MSC in treating tendon degeneration are reviewed here, as are the possible benefits of radiofrequency microtenotomy


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims

Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers.

Methods

We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 96 - 96
1 Dec 2017
Jiang N Wang L Yu B
Full Access

Aim. Cyclooxygenase-2 (COX-2) enzyme is one of the major mediators during inflammation reactions, and COX-2 gene polymorphisms of rs20417 and rs689466 have been reported to be associated with several inflammatory diseases. However, potential links between the two polymorphisms and risk of developing post-traumatic osteomyelitis remain unclear. The present study aimed to investigate associations between the rs20417 and rs689466 polymorphisms and susceptibility to post-traumatic osteomyelitis in Chinese population. Methods. A total of 189 patients with definite diagnosis of post-traumatic osteomyelitis and 220 healthy controls were genotyped for rs20417 and rs689466 using the genotyping method*. Chi-square test was used to compare differences of genotype distributions as well as outcomes of five different genetic models between the two groups. Results. Significant association was found between rs689466 and post-traumatic osteomyelitis by recessive model (GG vs. AA + AG) (OR = 1.74, 95% CI: 1.098–2.755, P =0.018). Although no statistical differences were identified of rs689466 between the two groups by allele model (P = .098) or homozygous model (P = 0.084), outcomes revealed a tendency that allele G may be a risk factor and people of GG genotype may be in a higher risk to develop post-traumatic osteomyelitis in Chinese population. However, no significant link was found between rs20417 and susceptibility to post-traumatic osteomyelitis in this Chinese cohort. Conclusions. To our knowledge, we reported for the first time that COX-2 gene polymorphism rs689466 may contribute to the increased susceptibility to post-traumatic osteomyelitis in Chinese population. *SNaPshot®


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 49 - 49
1 Dec 2016
Xu Y Maltesen R Larsen L Schonheyder HC Nielsen PH Nielsen JL Thomsen TR Nielsen KL
Full Access

Aim. The aim of this study was to gain insight into the in vivo expression of virulence and metabolic genes of Staphylococcus aureus in a prosthetic joint infection in a human subject. Method. Deep RNA sequencing (RNA-seq) was used for transcriptome profile of joint fluid obtained from a patient undergoing surgery due to acute S. aureus prosthetic joint infection. The S. aureus gene expression in the infection was compared with exponential culture of a S. aureus isolate obtained from the same sample using EdgeR. In addition, the genome of the isolate was sequenced on Miseq, assembled in CLC genomics workbench and annotated by MaGe. Moreover, using nuclear magnetic resonance (NMR) spectroscopy we analysed the metabolites in the joint fluid and in the culture supernatants to determine the biochemical composition of the environments. Results. Antibiotic susceptibility testing by disk diffusion (EUCAST) demonstrated that the strain was susceptible to β-lactams (penicillin and cefoxitin) and macrolides (erythromycin and roxitromycin). This was indirectly confirmed by the annotated genome, because of absence of known resistant genes. The patient showed no signs of improvement during 2-days treatment with antibiotics (different β-lactams and gentamicin) prior to the surgery. The RNA-seq data indicated that the strategy employed by S. aureus to survive and proliferate in the host during antibiotic treatment involved overexpression of various enzymes related to cell-wall synthesis and multidrug efflux pumps. Interestingly, these efflux pumps are only known to be related to fluoroquinolone resistance. Many of the genes encoding virulence factors were upregulated, including toxins and superantigen-like proteins, hemolysins, and immune evasion proteins. A number of chaperones and stress related genes were overexpressed indicating a stress response. Furthermore, the RNA-seq data provided clues of the potential major nutrient sources for the pathogen in vivo. Several amino acid degradation pathways were highly upregulated, e.g. arginine, histidine. Additional carbon sources included N-acetylneuraminate and purine/pyrimidine deoxyribonucleosides as indicated by the upregulation of the genes involved in the degradation pathways of these compounds and higher concentration of these substances in the joint fluid compared to culture supernatants. Conclusions. Our results show that the gene expression pattern of S. aureusin vivo is vastly different from that of an in vitro grown exponential culture, indicating that the pathogen adapts to host environmental conditions by altering gene expression. Finally our study emphasizes the importance of in vivo study in elucidating pathogenesis of S. aureus in prosthetic joint infections


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 15 - 15
1 May 2015
Lancaster S Mansell J Blom A
Full Access

The physiological effects of 1,25 vitamin D3 (1,25D) are well known and the previously held dogma was that this was the only active vitamin D metabolite. A number of methods have been employed to demonstrate the effects of 24,25-dihydroxyvitamin D3 (24,25D) on osteoblast maturation responses, in the presence of FHBP, ((3S) 1-Fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate), an agonist of lysophosphatidic acid (LPA). These include alkaline phosphatase (ALP) expression and investigation of the role of CYP27B1, which is the enzyme responsible for converting 24,25D to 1,24,25D. Ketoconazole, which inhibits the actions of CYP27B1, as well as an enzyme-linked immunosorbant assay (ELISA) for CYP27B1 were used. The results clearly demonstrate that 24,25D stimulates maturation of MG63 cells when combined with FHBP. It has also been shown that the metabolite is not converted to another active form (for example, 1,24,25D) within osteoblasts, due to the absence of CYP27B1. 24,25D is an active vitamin D metabolite and exerts its effects in a bone fide manner, rather than following conversion to another active metabolite in osteoblasts. Given it is non-calcaemic, this metabolite has the exciting potential of being used in a bone regenerative setting in orthopaedic applications