Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 115 - 115
1 Jul 2020
Jhirad A Wohl G
Full Access

In osteoporosis treatment, current interventions, including pharmaceutical treatments and exercise protocols, suffer from challenges of guaranteed efficacy for patients and poor patient compliance. Moreover, bone loss continues to be a complicating factor for conditions such as spinal cord injury, prescribed bed-rest, and space flight. A low-cost treatment modality could improve patient compliance. Electrical stimulation has been shown to improve bone mass in animal models of disuse, but there have been no studies of the effects of electrical stimulation on bone in the context of bone loss under hormone deficiency such as in post-menopausal osteoporosis. The purpose of this study was to explore the effects of electrical stimulation on changes in bone mass in the ovariectomized rat model of post-menopausal osteoporosis. All animal protocols were approved by the institutional Animal Research Ethics Board. We developed a custom electrical stimulation device capable of delivering a constant current, 15 Hz sinusoidal signal. We used 30 female Sprague Dawley rats (12–13 weeks old). Half (n=15) were ovariectomized (OVX), and half (n=15) underwent sham OVX surgery (SHAM). Three of each OVX and SHAM animals were sacrificed at baseline. The remaining 24 rats were separated into four equal groups (n=6 per group): OVX electrical stimulation (OVX-stim), OVX no stimulation (OVX-no stim), SHAM electrical stimulation (SHAM-stim), and SHAM no stimulation (SHAM-no stim). While anaesthetized, stimulation groups received transdermal electrical stimulation to the right knee through bilateral skin-mounted electrodes (10 × 10 mm) with electrode gel. The left knee served as a non-stimulated contralateral control. The no-stimulation groups had electrodes placed on the right knee, but not connected. Rats underwent the stim/no-stim procedure for one hour per day for six weeks. Rats were sacrificed (CO2) after six weeks. Femurs and tibias were scanned by microCT focussed on the proximal tibia and distal femur. MicroCT data were analyzed for trabecular bone measures of bone volume fraction (BV/TV), thickness (Tb.Th), and anisotropy, and cortical bone cross-sectional area and second moment of area. Femurs and tibias from OVX rats had significantly less trabecular bone than SHAM (femur BV/TV = −74.1%, tibia BV/TV = −77.6%). In the distal femur of OVX-stim rats, BV/TV was significantly greater in the stimulated right (11.4%, p < 0 .05) than the non-stimulated contralateral (left). BV/TV in the OVX-stim right femur also tended to be greater than that in the OVX-no-stim right femur, but the difference was not significant (17.7%, p=0.22). There were no differences between stim and no-stim groups for tibial trabecular measures, or cortical bone measures in either the femur or the tibia. This study presents novel findings that electrical stimulation can partially mitigate bone loss in the OVX rat femur, a model of human post-menopausal bone loss. Further work is needed to explore why there was a differential response of the tibial and femoral bone, and to better understand how bone cells respond to electrical stimulation. The long-term goal of this work is to determine if electrical stimulation could be used as a complementary modality for preventing post-menopausal bone loss


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 28 - 28
1 Nov 2016
Bhandari M Aleem I Aleem I Evaniew N Busse J Yaszemski M Agarwal A Einhorn T
Full Access

Electrical stimulators are commonly used to accelerate fracture healing, resolve nonunions or delayed unions, and to promote spinal fusion. The efficacy of electrical stimulator treatment, however, remains uncertain. We conducted a meta-analysis of randomised sham-controlled trials to establish the effectiveness of electrical stimulation for bone healing. We searched MEDLINE, EMBASE, CINAHL and Cochrane Central to identify all randomised sham-controlled trials evaluating electrical stimulators in patients with acute fractures, non-union, delayed union, osteotomy healing or spinal fusion, published up to February 2015. Our outcomes were radiographic nonunion, patient-reported pain and self-reported function. Two reviewers independently assessed eligibility and risk of bias, performed data extraction, and rated overall confidence in the effect estimates according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Fifteen randomised trials met our inclusion criteria. Electrical stimulation reduced the relative risk of radiographic nonunion or persistent nonunion by 35% (95%CI 19% to 47%; 15 trials; 1247 patients; number needed to treat = 7; p < 0.01; moderate certainty). Electrical stimulation also showed a significant reduction in patient-reported pain (Mean Difference (MD) on the 100-millimeter visual analogue scale = −7.67; 95% CI −13.92 to −1.43; 4 trials; 195 patients; p = 0.02; moderate certainty). Limited functional outcome data showed no difference with electrical stimulation (MD −0.88; 95% CI −6.63 to 4.87; 2 trials; 316 patients; p = 0.76; low certainty). Patients treated with electrical stimulation as an adjunct for bone healing have a reduced risk of radiographic nonunion or persistent nonunion and less pain; functional outcome data are limited and requires increased focus in future trials


Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES). BFR involves the application of an external compression cuff to the proximal thigh. In NMES training a portable electrical stimulation unit is connected to the limb via 4 electrodes. In both training modalities, following device application, a standardised set of exercises were performed by all participants. BFR and NMES have been developed to assist with rehabilitation following lower limb trauma and surgery. They offer an alternative for individuals who are unable to tolerate the high mechanical stresses associated with traditional rehabilitation programmes. The use of BFR and NMES in this study was compared across a total of 20 participants. Following allocation into one of the training programmes, the individuals completed training programmes across a 4-week period. Post-intervention outcomes were assessed using Surface Electromyography (EMG) which recorded EMG amplitude values for the following muscles: Vastus Medialis, Vastus Lateralis, Rectus Femoris and Semitendinosus. Increased Semitendinosus muscle activation was observed post intervention in both BFR and NMES training groups. Statistically significant differences between the two groups was not identified. Larger scale randomised-controlled trials are recommended to further assess for possible treatment effects in these promising training modalities


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 99 - 99
1 May 2019
Whiteside L
Full Access

Complete or nearly complete disruption of the attachment of the gluteus is seen in 10–20% of cases at the time of THA. Special attention is needed to identify the lesion at the time of surgery because the avulsion often is visible only after a thickened hypertrophic trochanteric bursa is removed. From 1/1/09 to 12/31/13, 525 primary hip replacements were performed by a single surgeon. After all total hip components were implanted, the greater trochanteric bursa was removed, and the gluteus medius and minimus attachments to the greater trochanter were visualised and palpated. Ninety-five hips (95 patients) were found to have damage to the muscle attachments to bone. Fifty-four hips had mild damage consisting of splits in the tendon, but no frank avulsion of abductor tendon from their bone attachments. None of these cases had severe atrophy of the abductor muscles, but all had partial fatty infiltration. All hips with this mild lesion had repair of the tendons with #5 Ticron sutures to repair the tendon bundles together, and drill holes through bone to anchor the repair to the greater trochanter. Forty-one hips had severe damage with complete or nearly complete avulsion of the gluteus medius and minimus muscles from their attachments to the greater trochanter. Thirty-five of these hips had partial fatty infiltration of the abductor muscles, but all responded to electrical stimulation. The surface of the greater trochanter was denuded of soft tissue with a rongeur, the muscles were repaired with five-seven #5 Ticron mattress sutures passed through drill holes in the greater trochanter, and a gluteus maximus flap was transferred to the posterior third of the greater trochanter and sutured under the vastus lateralis. Six hips had complete detachment of the gluteus medius and minimus muscles, severe atrophy of the muscles, and poor response of the muscles to electrical stimulation. The gluteus medius and minimus muscles were sutured to the greater trochanter, and gluteus maximus flap was transferred as in the group with functioning gluteus medius and minimus muscles. Postoperatively, patients were instructed to protect the hip for 8 weeks, then abductor exercises were started. The normal hips all had negative Trendelenburg tests at 2 and 5 years postoperative with mild lateral hip pain reported by 11 patients at 2 years, and 12 patients at 5 years. In the group of 54 with mild abductor tendon damage that were treated with simple repair, positive Trendelenburg test was found in 5 hips at 2 years and in 8 hips at 5 years. Lateral hip pain was reported in 7 hips at 2 years, and in 22 at 5 years. In the group of 35 hips with severe avulsion but good muscle tissue, who underwent repair with gluteus maximus flap transfer, all had good abduction against gravity and negative Trendelenburg tests at 2 and 5 years postoperative, and none had lateral hip pain. Of the 6 hips with complete avulsion and poor muscle who underwent abductor muscle repair and gluteus maximus flap transfer, all had weak abduction against gravity, mildly positive Trendelenburg sign, and mild lateral hip pain at 2 and 5 years postoperative. Abductor avulsion is uncommon but not rare, and is detected during THA only by direct examination of the tendon and removal of the trochanteric bursa. Simple repair of mild abductor tendon damage did not prevent progressive abductor weakness in some hips; and the increase in number of patients with lateral hip pain from 2 to 5 years suggests progressive deterioration. Augmentation of the repair with a gluteus maximus flap appears to provide a stable reconstruction of the abductor muscles, and seemed to restore abductor function in the hips with functioning muscles


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 77 - 77
1 May 2013
Krackow K
Full Access

Conservative management of osteoarthritis is boring, boring, boring! After all, we are surgeons. We operate, we cut! We all know that to retain respectability we have to go through the motions of ‘conservative management’, just so that we don't appear too anxious to apply a ‘real’ solution to the problem. However, the statistics are overwhelming. An estimated 43 million Americans have ‘arthritis’, but only 400,000 are coming forward each year for TKR. That means that in one way or another 42,600,000 are being treated conservatively. Most of those are self treating by self medication, use of external support, but mostly by decreasing their activities to a level where they can tolerate symptoms. They come to us when these measures stop working. We know what to do. 1. Weight loss – patients don't do it, 2. Physical therapy – very limited effectiveness 3. NSAIDS – patients have already tried OTC NSAIDS and have heard scary stories about therapeutic NSAIDS, 4. Hyaluronans – expensive, labour intensive, modest effectiveness, 5. Glucosamine/Chondroitin – might work, won't hurt, mixed evidence, 6. SAM-e, MSM – limited evidence – who knows?. What's on the horizon? Could OA of the knee go the way of RA, i.e. dramatically disappear from the population seeking TKR? It could happen. Electrical stimulation – it does good things for chondrocytes, circulation, suppresses destructive enzymes and in controlled studies reduces symptoms and improves function, deferring TKR. Cell therapy – possibly an effective solution to early cartilage lesions in the knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 53 - 53
1 Feb 2012
Kearns S Daly A Murray P Kelly C Bouchier-Hayes D
Full Access

Compartment syndrome (CS) is a unique form of skeletal muscle ischaemia. N-acetyl cysteine (NAC) is an anti-oxidant in clinical use, with beneficial microcirculatory effects. Sprague-Dawley rats (n=6/group) were randomised into Control, CS and CS pre-treated with NAC (0.5g/kg i.p. 1 hr prior to induction) groups. In a post-treatment group NAC was administered upon muscle decompression. Cremasteric muscle was placed in a pressure chamber in which pressure was maintained at diastolic minus 10 mm Hg for 3 hours inducing CS, muscle was then returned to the abdominal cavity. At 24 hours and 7 days post-CS contractile function was assessed by electrical stimulation. Myeloperoxidase (MPO) activity was assessed at 24-hours. CS injury reduced twitch (50.4±7.7 vs 108.5±11.5, p<0.001; 28.1±5.5 vs. 154.7±14.1, p<0.01) and tetanic contraction (225.7±21.6 vs 455.3±23.3, p<0.001; 59.7±12.1 vs 362.9±37.2, p<0.01) compared with control at 24 hrs and 7 days respectively. NAC pre-treatment reduced CS injury at 24 hours, preserving twitch (134.3±10.4, p<0.01 vs CS) and tetanic (408.3±34.3, p<0.01 vs CS) contraction. NAC administration reduced neutrophil infiltration (MPO) at 24 hours (24.6±5.4 vs 24.6±5.4, p<0.01). NAC protection was maintained at 7 days, preserving twitch (118.2±22.9 vs 28.1±5.5, p<0.01) and tetanic contraction (256.3±37 vs 59.7±12.1, p<0.01). Administration of NAC at decompression also preserved muscle twitch (402.4±52; p<0.01 versus CS) and tetanic (402.4±52; p<0.01 versus CS) contraction, reducing neutrophil infiltration (24.6±5.4 units/g; p<0.01). These data demonstrate NAC provided effective protection to skeletal muscle from CS induced injury when given as a pre- or post-decompression treatment