Increasingly more emphasis is being placed on Patient Reported Outcome Measures (PROMs). There are many used and reported in clinical studies, but there are no universally accepted or preferred measures. It is important for a researcher with a non-clinical background to understand how these assessments are performed, the type of information provided by each of the measures, and which diseases states are best reported by each measure.
Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and