Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 131 - 131
2 Jan 2024
Vadalà G
Full Access

Infections are among the most diffused complications of the implantation of medical devices. In orthopedics, they pose severe societal and economic burden and interfere with the capability of the implants to integrate in the host bone, significantly increasing failure risk. Infection is particularly severe in the case of comorbidities and especially bone tumors, since oncologic patients are fragile, have higher infection rate and impaired osteoregenerative capabilities. For this reason, prevention of infection is to be preferred over treatment. This is even more important in the case of spine surgery, since spine is among the main site for tumor metastases and because incidence of post operative surgical-site infections is significant (up to 15-20%) and surgical options are limited by the need of avoiding damaging the spinal cord. Functionalization of the implant surfaces, so as to address infection and, possibly, co- adjuvate anti-tumor treatments, appears as a breakthrough innovation. Unmet clinical needs in infection and tumors is presented, with a specific focus on the spine, then, new perspectives are highlighted for their treatment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process. A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a. Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage. In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors. Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria. Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold. These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 50 - 50
17 Nov 2023
Williams D Ward M Kelly E Shillabeer D Williams J Javadi A Holsgrove T Meakin J Holt C
Full Access

Abstract. Objectives. Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model. Methods. Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel machine learning algorithms and in vitro, six-axis mechanical testing on human, porcine and bovine samples to develop and test the modelling methods rigorously. Results & Discussion. MRI sequences have been identified that provide high-quality image data and information on different tissue types which will be used to predict subject-specific disc properties. In-vivo protocols to capture motion analysis, EMG muscle activity, and video X-rays of the spine have been designed with planned data collection of 15 healthy volunteers. Preliminary modelling work has evaluated potential machine learning approaches and quantified the sensitivity of the models developed to material properties. Conclusion. The development and testing of these image-driven subject-specific spine models will provide a new tool for determining forces in the spine. It will also provide new tools for measuring and modelling spine movement and quantifying the properties of the spinal tissues. Acknowledgments. Funding from the EPSRC: EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 94 - 94
2 Jan 2024
Graça A Domingues R Docheva D Gomez-Florit M Gomes M
Full Access

Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human adipose stem cells (hASCs) and different types of platelet-derived EVs, were produced. Then, the influence of the tendon-mimetic constructs and the distinct EVs populations in the hASCs tenogenic differentiation were assessed over culture time. We observed that the hASCs on the nanofibrous tendon scaffolds, show high cytoskeleton anisotropic organization that is characteristic of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted hASCs tenogenic commitment, supported by the increased gene expression of tendon-related markers (SCX and TNMD). Additionally, EVs enhanced the deposition of tendon like extracellular matrix (ECM), as evidenced by the increased gene expression of ECM-related markers such as COL1, COL3, DCN, TNC, and MMP-3, which are fundamental for ECM synthesis and degradation balance. Moreover, EVs induced lower collagen matrix contraction on hASCs, which has been related with lower myofibroblast differentiation. Overall, the results revealed that EVs are capable of modulating stem cells' behavior boosting their tenogenic commitment, through the increased expression of healthy tendon cell markers, potentiating ECM deposition and decreasing cell contractility. Therefore, platelet EVs are a promising biochemical tool, worthy to be further explored, as paracrine signaling that might potentiate tendon repair and regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 34 - 34
2 Jan 2024
Díaz-Payno P Llorca J Lantada A Patterson J
Full Access

Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide. [1]. , and represents a significant economic burden to patients and society. [2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine. [3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair. [4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint. [5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA). [6]. Such framework can be 3D printed to produce anatomically accurate implants. [7]. , attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures. [8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC. Acknowledgments: This project has received funding from the European Union's Horizon Europe research and innovation MSCA PF programme under grant agreement No. 101110000


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 129 - 129
1 Nov 2021
Vermue H Tack P Jan V
Full Access

Introduction and Objective. Total knee arthroplasty (TKA) is a frequently and increasingly performed surgery in the treatment of disabling knee osteoarthritis. The rising number of procedures and related revisions pose an increasing economic burden on health care systems. In an attempt to lower the revision rate due to component malalignment and soft tissue imbalance in TKA, robotic assistance (RA) has been introduced in the operating theatre. The primary objective of this study is to provide the results of a theoretical, preliminary cost-effectiveness analysis of RA TKA. Materials and Methods. A Markov state-transition model was designed to model the health status of sixty-seven-year-old patients in need of TKA due to primary osteoarthritis over a twenty-year period following their knee joint replacement. Transitional probabilities and independent variables were extracted from existing literature. Patients’ state in the transition model was able to change on an annual basis. The main differences between the conventional and RA TKA were the outlier rate in the coronal plane and the cost of the procedure. In RA TKA, it was hypothesized that there were lower revision rates due to a lower outlier rate compared to conventional TKA. Results. The value attributed to the utility both for primary and revision surgery has the biggest impact on the ICER, followed by the rate of successful primary surgery and the cost of RA-technology. Only 2.18–2.34% of the samples yielded from the probabilistic sensitivity analysis proved to be cost-effective (threshold set at $50000/QALY). A calculated surgical volume of at least 191–253 cases per robot per year is needed to prove cost-effective taking the predetermined parameter values into account. Conclusions. Robot-assisted TKA might be a cost-effective procedure compared to conventional TKA if a minimum of 191 cases are performed on a yearly basis, depending on the cost of the robot. The cost-benefit of the robotic TKA surgery is mainly based on a decreased revision rate. This study is based on the assumption that alignment is a predictor of success in total knee arthroplasty. Until there is data confirming the assertion that alignment predicts success robot-assisted surgery cannot be recommended


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 21 - 21
1 Apr 2018
Keppler A Neuerburg C Westphal I Aszodi A Böcker W Schieker M
Full Access

Introduction. Osteoarthritis (OA) is a slow progressive disease and a huge economic burden. A new target for therapy could be a growth factor treatment to prevent the loss of cartilage following injuries to the joint. BMP-7 is a promising candidate for such a novel therapy based on growth factors. In this study we combined the chondroprotective effects of BMP-7 with a novel thermosensitive hydrogel to prevent cartilage degeneration in a murine OA model. M&M. A BDI based thermosensitive hydrogel (Pluronic 123 with Butandiisyocyanate (BDI); LivImplant GmbH, Germany) was augmented with BMP-7 (rh-BMP-7, Olympus Biotech, France; 0.2 µg BMP-7/10µg Hydroge). To investigate the effects on OA progression we used the murine DMM (Destabilization of the medial meniscus) model for OA induction. Animal testing was approved by the Government Commitee of Upper Bavaria (file reference: 55.2-1-54-2532-150-13). A total of 38 C57BL/6 mice were included in this study. Immediately after the DMM surgery and wound closure BMP-7 mixed with BDI Hydrogel or only the BDI Hydrogel was administered via intraarticular injection. The following groups were examined: A) BMP-7 augmented BDI hydrogel B) only BDI hydrogel C) no injection following surgery D) control, healthy contralateral knee joint. After 4 (n=4 per group) and 8 (n=8) weeks mice were euthanized and knees were compared histologically. Results/Discussion. After 4 weeks the BMP-7 treated group showed a significant lower cartilage erosion compared to the group which only received DMM surgery. In the BMP-7 treated knee, osteoarthritis progression was also milder after 8 weeks than in knees of the DMM group. In all knees, except the control group, cartilage degeneration further progressed throughout the observation period. The contralateral joints showed no severe OA. We did not observe any inflammation or systemic reaction to the hydrogel. Taken together, we can conclude that BMP-7 showed a positive effect on the cartilage structure. Yet, the effect of a single administration is not strong enough to see a significant effect after 8 weeks. Furthermore, we can conclude, that the intraarticular administration of a thermosensitive hydrogel is an easy and feasible way to administer active agents precise to the joint


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 108 - 108
1 May 2017
Alzahrani M AlQahtani S Harvey E
Full Access

Introduction. Orthopaedic trauma surgery is characterised by repetitive, forceful tasks that are physically demanding, thus theoretically increasing the risk of musculoskeletal injuries in these surgeons. The aim of this study is to assess prevalence, characteristics and impact of musculoskeletal disorders among orthopaedic trauma surgeons. Methods. A modified version of the physical discomfort survey was sent to surgeon members of the Orthopaedics Trauma Association (OTA) via e-mail. For data analysis, one-way ANOVA and Fisher Exact test were performed to compare the variables where appropriate. P values<0.05 were considered statistically significant. Results. A total of 86 surgeons completed the survey during the period of data collection. Of the respondents 84.9% were males and more than half were aged between 30–45 years old. The majority of musculoskeletal complaints and disorders were low back pain (29.3%), wrist or forearm tendinitis (18.0%), elbow lateral epicondylitis (15.4%), plantar fasciitis (14.7%). When data was analysed according to number of years in practice the results yielded a significant difference between the groups in both number of regions involved (p<0.05) and number of musculoskeletal disorders (p<0.05), as a higher proportion of these were documented in surgeons practicing for 16–20 years and more than 30 years. Also surgeons working in a private setting (p<0.005), surgeons working in more than one institute (p<0.005), increased number of regions involved (p<0.001) and increased number of musculoskeletal disorders (p<0.001) were significantly more likely to require time-off work. Conclusion. To our knowledge, our study is the first of its kind that shows a high percentage of orthopaedic trauma surgeons sustain occupational injuries some time in their careers. Cost of management and rehabilitation of these injuries, in addition to the amount of missed workdays due to these injuries indicate that these injuries have a significant economic burden on the health-care system


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 8 - 8
1 Jan 2017
Goërtz Y Buil I Jochem I Sipers W Smid M Heyligers I Grimm B
Full Access

Falls and fall-related injuries can have devastating health consequences and form a growing economic burden for the healthcare system. To identify individuals at risk for preventive measures and therapies, fall risk assessment scores have been developed. However, they are costly in terms of time and effort and rely on the subjective interpretation of a skilled professional making them less suitable for frequent assessment or in a screening situation. Small wearable sensors as activity monitor can objectively provide movement information during daily-life tasks. It is the aim of this study is to evaluate whether the activity parameters from wearable monitors correlate with fall risk scores and may predict conventional assessment scores. Physical activity data were collected from nineteen home-dwelling frail elderly (n=19, female=10; age=81±5.6 years, GFI=5.4±1.9, MMSE=27.4±1.5) during waking hours of 4 consecutive days, wearing a wearable 9-axis activity monitor (56×40×15mm, 25g) on the lateral side of the right thigh. The signal was analysed using self-developed, previously validated algorithms (Matlab) producing the following parameters: time spent walking, step count, sit-stand-transfer counts, mean cadence (steps/min), count of stair uses and intensity counts >1.5G. Conventional fall risk assessment was performed using the Tinetti sore (range: 0–28=best), a widely used tool directly determining the likelihood of falls and the Short Physical Performance Battery (SPPB, range: 0–12=best) which measures lower extremity performance as a validated proxy of fall risk. The anxiety to fall during activities of daily living was assessed using the self-reported Short Falls Efficacy Scale-International (FES-I, range: 7–28=worst). Correlations between activity parameters and conventional scores were tested using Pearson's r. The activity parameters (daily means) for the 19 participants were 70.8min (SD=28.7; min-max= 22.8–126.6) of walking, 4427 steps (SD=2344; min-max= 1391–8269) with a cadence 79.3 steps per minute (SD=17.1; min-max=52.8–103.9) and 33.3 sit-stand transfers (SD=9.7; min-max=8.8–48.0). The average Tinetti score was 21.2 (SD=5.1; min-max=10.0–27.0), with SPPB scoring 7.8 (SD=2.4; min-max=3.0–12.0), and FES-I 4.6 (SD=5.1; min-max=7.0–23.0). Strong (r≥0.6) and significant correlations existed between the walking cadence and the Tinetti (r=.60, p=<.01) and SPPB (r=.71, p=<.01) scores. No other correlations were found between the activity parameters and the Tinetti, SPPB and none with the psychological FES-I questionnaire. Conventional fall risk scores and activity data are comparable to literature values and thus representative of home-dwelling frail elderly including a wide range covered for both dimensions. No quantitative activity measure had a predictive value for fall risk assessment. Strongly correlated with Tinetti and SPPB, objectively measured cadence as a qualitative parameter seems a useful parameter for remotely identifying fall risk in frail elderly. The perceived anxiety to falls was not correlated to quantitative and qualitative activity parameters suggesting that this psychological aspect hardly affects activity. Wearable activity monitors seem a valid tool to assess fall risk remotely and thus allow low cost, frequent and large group screening of frail elderly towards a health economically viable tool for a growing societal need. The predictive quality of activity monitored data may be increased by deriving additional qualitative measures from the activity data


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 29 - 29
1 Jan 2013
Foster N Mullis R Lewis M Whitehurst D Hay E
Full Access

Background and purpose. The STarT Back trial demonstrated benefits from a stratified primary care model that targets low back pain (LBP) treatment according to patient prognosis (low-, medium-, or high-risk). The current IMPaCT Back study implemented this approach in everyday primary care to investigate; i) changes in GPs' and physiotherapists' attitudes, confidence and behaviours, ii) patients' clinical outcomes, and iii) cost-effectiveness. Method. This quality improvement study involved 5 GP practices (65 GPs and 34 physiotherapists) with before and after implementation cohorts of consecutive LBP consulters using an intention to treat analysis to compare patient data. Phase 1: Usual care data collection from clinicians and patients (pre-implementation). Phase 2: Introduction of prognostic screening and targeted treatment including a minimal GP intervention (low-risk group), systematic referral to physiotherapy (medium-risk group) and to psychologically informed physiotherapy (high-risk group). Phase 3: Post-implementation data collection from clinicians and patients. Results. 922 patients participated (368 in Phase 1 and 554 in Phase 3) with similar baseline characteristics (mean age 53 v 54 years, disability (RMDQ) 8.7 v 8.4). Significant differences in favour of targeted treatment were demonstrated in clinicians' attitudes and confidence, and RMDQ 6-month change scores (mean difference 0.7 [95% CI 0.1, 1.4]). Health care cost savings were also identified, in addition to an average of 3.5 fewer days off work during study follow-up. Conclusion. A stratified model of LBP management can be successfully introduced into real-life primary care, improving clinicians' attitudes and confidence and patient disability outcomes and reducing the economic burden of LBP. Conflicts of Interest. None. Source of Funding. The Health Foundation. This abstract has not been previously published in whole or substantial part, it has been presented at international meetings in 2011, but not yet a national meeting


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives

Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration.

Methods

Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives

Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage.

Materials and Methods

Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 265 - 272
1 Feb 2007
Ristiniemi J Flinkkilä T Hyvönen P Lakovaara M Pakarinen H Jalovaara P

External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7).

Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used.

Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the BMP group compared with the matched group. The mean time to union (p = 0.002), the duration of absence from work (p = 0.018) and the time for which external fixation was required (p = 0.037) were significantly shorter in the BMP group than in the matched group. Secondary intervention due to delayed healing was required in two patients in the BMP group and seven in the matched group.

RhBMP-7 can enhance the union of distal tibial fractures treated by external fixation.