Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 106 - 106
1 Jul 2020
Dion C Lanting B Howard J Teeter M Willing R
Full Access

During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage eccentric loading protocol. Static eccentric (70% medial/ 30% lateral) loading of 2100 N was applied to the implants before and after subjecting them to 5×103 loading cycles of 700 N at 2 Hz using a joint motion simulator. Bone-implant micromotion was measured using a high-resolution optical system. The pTKA were removed. The proximal tibial bone defect was measured. One tibia from each pair was randomly allocated to the experimental group, and rTKA was performed with a titanium augment printed using selective laser melting. The contralateral side was assigned to the control group (revision with fully cemented stems). The three-stage eccentric loading protocol was used to test the revision TKAs. Independent t-tests were used to compare the micromotion between the two groups. After revision TKA, the mean micromotion was 23.1μm ± 26.2μm in the control group and 12.9μm ± 22.2μm in the experimental group. There was significantly less micromotion in the experimental group (p= 0.04). Prior to revision surgery, the control and experimental group had no significant difference in primary TKA micromotion (p= 0.19) and tibial bone loss (p= 0.37). This study suggests that early fixation stability of revision TKA with the novel 3D printed titanium augment is significantly better then the conventional fully cemented rTKA. The early press-fit fixation of the augment is likely sufficient for promoting bony ingrowth of the augment in vivo. Further studies are needed to investigate the long-term in-vivo fixation of the novel 3D printed augment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 20 - 20
1 Sep 2012
Brigstocke G
Full Access

Introduction. In complex primary and revision total knee replacement (TKR) the operating surgeon may encounter proximal tibial bone defects. The correct management of such defects is fundamental to both the initial stability and long-term survival of the prosthesis. Cement or metal augments have been used to address some such type II unconstrained defects [1]. Aim. The aim of this finite element (FE) study was to analyse the comparative behaviour of cement and metal based augments and quantify the stresses within these different augments and underlying cancellous bone. Materials and methods. A three-dimensional FE model was constructed from a computer tomography (CT) scan of the proximal tibia using SIMPLEWARE v3.2 image processing software. The tibial component of a TKR was implanted with either a block or wedge-shaped augment made of either metal or cement. The model was axially loaded with a force of 3600N and testing was conducted with both evenly and eccentrically distributed loads. Results. Upon loading the FE model, the von-Mises stresses in the cancellous bone underneath the augments were found to be higher with cement based augments in comparison their metal based counterparts. This was evident with both block and wedge-shaped augments. The FE model demonstrated that compressive stresses within the metal based augments were greater than those within the cement based augments. This was evident with both block and wedge designs. Upon even loading the maximum recorded compressive stresses within the metal augments were 5 times less than the endurance limit of the material [3]. However, the maximum recorded compressive stresses within cement augments were only half the endurance limit of the material [4] and upon eccentric loading compressive stresses in excess of the endurance limit were recorded. Discussion. The FE model has demonstrated that cement based augments undergo a greater deformation when loaded and therefore transfer greater loads to the underlying cancellous bone. This is a result of the inherent flexibility of the cement based augment in comparison to the stiffer metal counterparts. The greater transference of load to cancellous bone with cement based augments may reduce the possibility of stress shielding. However, the compressive stresses within cement based augments are too close to the endurance limit of the material and with uneven loading even exceed it. This would imply that cement based augments are more prone to fatigue failure than their metal counterparts. Conclusion. This FE study supports the use of metal based augments over cement based augments in augmented and revision TKR surgery


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 12 - 12
1 Apr 2019
Campbell P Kung MS Park SH
Full Access

Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing eccentric loading and extensive metal wear. The components were revised for a range of clinical reasons including aseptic loosening and the need to expand the prosthesis during growth. With the exception of the few cases with severe impingement, it is unlikely that the wear features seen here contributed to the need for revision. While it was reassuring that corrosion was not a prominent feature of these modular M-M articulations, retrieval analysis of DFR components should be continued to confirm this finding, better document the in vivo wear processes and point to design features that might be improved for future patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 23 - 23
1 Nov 2016
Iannotti J
Full Access

Humeral head size is defined by the radius of curvature and the thickness of the articular segment. This ratio of radius to thickness is within a narrow range with an average of 0.71. The articular surface of the normal humeral head measured within the AP plane is defined by three landmarks on the non-articular surface of the proximal humerus. The perfect circle concept can be applied for assessment of the anatomic reconstruction of the post-operative x-rays and more importantly can be used intra-operatively as a guide when choosing the proper prosthetic humeral head component. The humeral head is an elliptical shape with its AP dimension being approximately 2 mm less than the SI dimension. This shape contributes to the roll and translation of the normal shoulder but is not replicated by the spherical shape of the prosthetic humeral head. The glenoid vault has a consistent 3D shape and use of the vault model within 3D planning software can define the patient's pre-morbid anatomy, specifically the location of the joint line and patient specific version and inclination. Use of this tool can assist the surgeon in defining the optimal implant and its location. In patients with little or no bone loss, a symmetric glenoid implant is often ideal for resurfacing. When there is asymmetric bone loss, often seen posteriorly with osteoarthritis, an asymmetric posteriorly augmented component can improve the ability to correct the deformity while maintaining the native joint line. It is suggested that these augmented implants in selected patients will help restore and maintain humeral alignment and lessen the risk for residual posterior humeral head subluxation and eccentric loading of the glenoid component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 52 - 52
1 Nov 2016
MacDonald S
Full Access

While the vast majority of total knee replacements performed throughout the world employ a modular metal-backed tibial tray, and not an all-polyethylene tray, this issue remains controversial. Proposed advantages to a metal-backed tray include: a) decreased bending strains, b) reduces compressive stresses in the cement and cancellous bone beneath the baseplate (especially in asymmetric loading), c) distributes load more evenly across the interface. Proposed advantages of an all-polyethylene tray include: a) cost reduction, b) reduced polyethylene thickness with the same amount of bone resection, c) increased tensile stresses at the interface during eccentric loading. The challenge is at present we don't know the >10-year track record of current generation tibial components. This debate centers on the <60-year-old. This is the most difficult patient in total knee arthroplasty with higher revision rates than an older cohort. It makes sense to use an all-polyethylene tibia if the revision rates turn out to be similar and you don't intend to do a polyethylene exchange in the future. It makes sense to do a modular tray if the results are similar, but there is an intention to do a polyethylene exchange in the future. If either one of these implants choices has a lower cumulative revision rate, then that is the implant of choice at present. However, we need to understand that at present we don't know if the results of current generation all-polyethylene tibial components will indeed be equal to metal-backed components. The most recent data from the Australian registry suggests that in fact all-polyethylene tibial components have a higher failure rate than metal-backed components when looking at the entire class of design. This would be expected to be even more significant in the younger patient


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 63 - 63
1 Mar 2017
Oh K Tan H
Full Access

Cervical total disc replacement has been in practice for years now as a viable alternative to cervical fusion in suitable cases, aspiring to preserve spinal motion and prevent adjacent segment disease. Reports are rife that neck pain emerges as an annoying feature in the early postoperative period. The facet joint appears to be the most likely source of pain. 50 patients were prospectively followed up through 5 years after having received disc replacement surgery, indicated for symptomatic soft disc herniation of the cervical spine presenting with radiculopathy. • All were skeletally mature and aged between 22 to 50. • All had failed a minimum of 6 months conservative therapy. • Up to 2 disc levels were addressed. C3 till C7 levels. • Single surgeon (first author). • NDI > 30% (15/50). • Deteriorating radicular neurology. We excluded those with degenerative trophic changes of the cervical spine, focal instability, trauma, osteoporosis, previous cervical spine surgery, previous infection, ossifying axial skeletal disease and inflammatory spondyloarthritides. The device used was an unconstrained implant with stabilizing teeth. Over the 5 years, we studied their postoperative comfort level via the Neck Disability Index (NDI) and Visual Analogue Score (VAS). Pre-operative and post-operative analysis of the sagittal axis and of involved facet joints were done. 22 patients suffered postoperative neck pain as reflected by the NDI and VAS scores. Of these, 10 reported of neck pain even 24 months after surgery. However, none were neurologically worse and all patients returned to their pre-morbid functions and were relieved of pain by 28 months. All 22 patients reported of rapid dissolution of neckache after peri-facetal injections of steroids were done under image guidance. We draw attention to the facet joint as the pain generator, triggered by inappropriate implant height, eccentric stresses via hybrid constructs, eccentric loading due to unconstrained devices and unaddressed Luschka joint degeneration. Such factors require careful selection of patients for surgery, necessitate proper pre-operative templating and call for appropriate technical solutions during surgery


The anterior portion of the anatomical neck is used as a reference for the osteotomy in shoulder arthroplasty. Resection at this level is thought to remove a segment of a sphere which can accurately be replaced with a prosthetic implant. The objective of the study was to analyse the cartilage/metaphyseal interface relative to an ideal osteotomy plane to define points of reference the may recover retroversion accurately. Data were collected from 24 humeri using a novel technique, combining data acquired using a Microscribe digitiser and surface laser scanner. Rhinocerus NURBS modelling software was used to analyse the Cartilage/metaphyseal interface. The retroversion angle was calculated for the normal geometry and for the standard osteotomy along the anterior cartilage/metaphyseal interface. An ideal osteotomy plane was then created for each specimen and the perpendicular distance from the cartilage/metaphyseal interface was determined, identifying points of least deviation. The reference points were used to simulate a new osteotomy for which retroversion was calculated. Paired t-tests were used to compare the novel osteotomy and traditional osteotomy to the normal geometry. The mean retroversion for the normal geometry was 18.5±9.0 degrees. The mean retroversion for the traditional osteotomy technique was 29.5±10.7 degrees, significantly different from the original (p< 0.001). The mean retroversion using the novel osteotomy was 18.9±8.9 degrees and similar to the normal geometry (p=0.528). The traditional osteotomy resulted in a mean increase in retroversion of 38%. The increase in version may result in eccentric load on the glenoid, an alteration to the rotator cuff balance and poor clinical outcome. The novel osteotomy based on points identified around the cartilage/metaphyseal interface that deviated least from an ideal osteotomy plane resulted in more accurate recovery of head geometry. The novel technique may improve clinical outcome. Further investigation is warranted


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 81 - 81
1 Apr 2018
Sabesan V Whaley J Lima D Villa J Pathak V Zhang L
Full Access

Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability. Materials and Methods. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction. Results. The model prediction of force ratio for the augmented wedge design was 0.56 and for the augmented step design was 0.87. The step design had higher force ratio than the wedge one at similar conformity settings. Micromotion was defined as a combination of three components based on different directions. The distraction measured for the wedge design was 0.05 mm and for the step component, 0.14 mm. Both implants showed a similar pattern translation wise. The greatest difference between the two implants was from the compression standpoint, where the step component showed almost three times more movement than the wedge design implant. Overall, the step design registered greater micromotion than the wedge one during abduction physiologic loading. The level of stress generated during abduction on the glenoid vault was 1.65 MPa for the wedge design and 3.78 MPa for the step one. All stress levels were found below the determined bone failure limit for the bone and polyethylene (10–20 MPa). Concerning implant stress, the results measured on the backside of the wedge and step components were 6.62 MPa and 13.25 MPa, respectively. Both components showed high level of stress level measured on the cement mantle, which exceeded the endurance limit for cement fracture (4 MPa). Discussion. The augmented glenoid is a novel surgical implant for use in with severe glenohumeral osteoarthritis. Unlike standard glenoid prosthetics, the augmented glenoid is better suited for correcting moderate to severe retroversion. Whereas a step design might provide higher glenohumeral stability, the tradeoff is higher glenoid vault, implant and cement mantle stress levels, and micromotion, indicating higher risks of implant loosening, failure or fracture over time, leading to poorer clinical outcomes and higher revision rates