Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 2 - 2
17 Apr 2023
Miller B Hornestam J Carsen S Benoit D
Full Access

To investigate changes in quadriceps and hamstrings muscle groups during sustained isokinetic knee flexion and extension. 125 paediatric participants (45 males and 80 females, mean age 14.2 years) were divided into two groups: participants with a confirmed ACL tear (ACLi, n = 64), and puberty- and activity-level matched control participants with no prior history of knee injuries (CON, n = 61). Participants completed a series of 44 repetitions of isokinetic knee flexion and extension at 90 deg/ sec using a Biodex dynamometer (Biodex Medical Systems Inc, Shirley, New York). Surface EMG sensors (Delsys Incorporated, Natick, MA) simultaneously recorded the quadriceps and hamstring activations. Muscle function was assessed as the change in quadriceps activation and extension torque were calculated using the percent difference between the mean of the first five trials, and the mean of the last five trials. ACLi participants had significantly higher percent change in quadriceps activation for both healthy and injured legs, in comparison to CON dominant leg. As such, the healthy leg of the ACLi participants is activating significantly more than their health matched controls, while also demonstrating reduced muscular endurance (less torque in later repetitions). Therefore, we conclude that the non-injured limb of the ACLi participant is not performing as a healthy limb. Since return to activity clearance following ACLi implies return to sport against age- and activity matched opponents, clearing young athletes based on the non-injured contralateral limb may put them at greater risk of reinjury


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 17 - 17
17 Apr 2023
Hornestam J Miller B Del Bel M Romanchuk N Carsen S Benoit D
Full Access

To investigate if the countermovement jump height differs between ACL injured and uninjured female adolescents and to explore kinematic differences between limbs. Additionally, the association between isometric knee extension strength and jump height was investigated. Thirty-one ACL injured female adolescents (ACLi, 15.3 ± 1.4yrs, 163.9 ± 6.6cm, 63.0 ± 9.3kg) and thirty-eight uninjured (CON, 13.2±1.7yrs, 161.7 ± 8.1cm, 50.6 ± 11.1kg) participated in this study. All participants performed a countermovement jump task, with 3D kinematics collected using a motion analysis system (Vicon, Nexus, Oxford, UK) at 200Hz, and a maximum isometric knee extension task on an isokinetic dynamometer (Biodex Medical Systems, New York, USA) for three trials. The peak torque was extracted from the isometric trials. Independent samples t-test compared the maximum jump height normalised by the dominant leg length between groups, paired samples t-test compared the maximum hip and knee extension and ankle plantar flexion velocities before take-off between limbs in both groups, and a Pearson's correlation test investigated the association between the isometric knee extension strength and jump height. The ACLi jumped 13% lower compared to the CON (p=0.022). In the ACLi, the maximum hip and knee extension and ankle plantar flexion velocities were greater in the non-injured limb, compared to the injured limb; however, no differences between limbs were found in the CON. The isometric knee extension strength of both limbs was positively correlated with jump height (limb 1: r=0.329; p=0.006, and limb 2: r=0.386; p=0.001; whereas limb 1 corresponds to the ACLi injured limb and CON non-dominant limb, and limb 2 to the ACLi non-injured limb and CON dominant limb). ACL injured female adolescents present lower jump height than controls and greater contribution of their non-injured limb, compared to their injured limb, during a countermovement jump task. Also, current results indicate that jump height is positively related to isometric knee extension strength measure


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 37 - 37
1 Dec 2020
Yıldırımkaya B Söylemez MS Uçar BY Akpınar F
Full Access

Introduction and Purpose. Metacarpal fractures constitute approximately one third of all hand fractures. The majority of these fractures are treated by conservative non-surgical methods. The aim of this study is to obtain the appropriate anatomical alignment of the fracture with dynamic metacarpal stabilization splint (DMSS) and to maintain the proper bone anatomy until the union is achieved. In addition, by comparing this method with short arm plaster splint (SAPS) application, it is aimed to evaluate whether patients are superior in terms of comfort, range of motion (ROM) and grip strength. Materials and Methods. In our study, SAPS or DMSS was applied to the patients with 5th metacarpal neck fracture randomly after fracture reduction and followed for 3 months. A total of 119 patients with appropriate criteria were included in the study. Radiological alignment of the fracture and amount of joint movements were evaluated during follow-up. Grip strength was evaluated with Jamar dynamometer. EQ-5D-5L and VAS scores were used for clinical evaluation. Results. 103 patients completed their follow-up. 51 patients were treated with SAPS and 52 patients were treated with DMSS. The mean age of the SAPS was 29.5 (SD ± 9.4; 16–53 years) and the mean age of the DMSS group was 27.8 (SD ± 11.6; 16–63). Pressure sores was seen in 5 patients in the DMSS group, while no pressure sore was seen in the SAPS (p = 0.008). There was no significant difference between the two groups in the VAS scores at all times. There was no significant difference between the mean dorsal cortical angulation (DCA) before the reduction, after the reduction and at the third month follow-ups. There was no statistically significant difference between the length of metacarps at first admittion before reduction, after reduction and at third month follow-ups. When the grip strength of the two groups were compared as a percentage, the grip strength of the patients in the DMSS group was found to be higher at 1st month, 2nd month and 3rd month (p <0.001). When the ROM values of the patients were evaluated, DMSS group had a higher degree of ROM in the first month compared to the SAPS group (p <0.001). No statistically significant difference was detected among groups at third month in the ROM of the IP and MP joints. However, wrist ROM was statistically higher in DMSS group at 3rd month (p <0.05). There was a statistically significant difference between EuroQol scores in favor of DMSA group (p <0.05). Discussion and Conclusion. In stable 5th metacarpal neck fractures, DMSA is as effective as SAPS to maintain bone anatomy. In addition, DMSA can be preferred for fixation plaster splint or circular plaster applications for the prevention of reduction in boxer fractures, with the advantage of having high clinical scores, which is an indication of early acquisition of grip strength, ease of use and patient comfort


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 68 - 68
1 Dec 2020
Taylan O Slane J Ghijselings I Delport HP Scheys L
Full Access

Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure. 1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome. 2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments. 3. . Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated. 4. and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05). Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01). Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes. In conclusion, to further prove the success of PIPB, further biomechanical studies are required to evaluate the success rate of PIPB technique in different implant designs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 64 - 64
1 Apr 2018
Jacobsen JS Hölmich P Thorborg K Bolvig L Jakobsen SS Søballe K Mechlenburg I
Full Access

Introduction. Intra-articular injury has been described as primary cause of pain in hip dysplasia. At this point it is unknown whether external muscle-tendon related pain coexists with intra-articular pathology. The primary aim was to identify muscle-tendon related pain in 100 dysplasia patients. The secondary aim was to test if muscle-tendon related pain is linearly associated to self-reported hip disability and muscle strength in patient with hip dysplasia. Materials and methods. One hundred patients (17 men) with a mean age of 29 years (SD 9) were included. Clinical entity approach was carried out to identify muscle-tendon related pain. Muscle strength was assessed with a handheld dynamometer and self-reported hip disability was recorded with the Copenhagen Hip and Groin Outcome Score (HAGOS). Results. Iliopsoas- and abductor-related pain were most prevalent with prevalences of 56% (CI 46; 66) and 42% (CI 32; 52), respectively. Adductor-, hamstrings- and rectus abdominis-related pain were less common. There was a significant inverse linear association between muscle-tendon related pain and self-reported hip disability ranging from −3.35 to −7.51 points in the adjusted analysis (p<0.05). Likewise an inverse linear association between muscle-tendon related pain and muscle strength was found ranging from −0.11 Nm/kg to −0.12 Nm/kg in the adjusted analysis (p<0.05). Conclusion. Muscle-tendon related pain seem to exist in about half of patients with hip dysplasia with a high prevalence of muscle-tendon related pain in the iliopsoas and the hip abductors and affects patients” self-reported hip disability and muscle strength negatively


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 4 - 4
1 Jan 2017
Lamontagne M Kowalski E Catelli D Beaulé P
Full Access

Dual mobility (DM) bearing implants reduce the incidence of dislocation following total hip arthroplasty (THA) and as such they are used for the treatment of hip instability in both primary and revision cases. The aim of this study was to compare lower limb muscle activity of patients who underwent a total hip arthroplasty (THA) with a dual mobility (DM) or a common cup (CC) bearing compared to healthy controls (CON) during a sit to stand task. A total of 21 patients (12 DM, 9 CC) and 12 CON were recruited from the local Hospital. The patients who volunteered for the study were randomly assigned to either a DM or a CC cementless THA after receiving informed consent. All surgeries were performed by the same surgeon using the direct anterior approach. Participants underwent electromyography (EMG) and motion analysis while completing a sit-to-stand task. Portable wireless surface EMG probes were placed on the vastus lateralis, rectus femoris, biceps femoris, semitendinosus (ST), gluteus medius and tensor fasciae latae muscles of the affected limb in the surgical groups and the dominant limb in the CON group. Motion capture was used to record lower limb kinematics and kinetics. Muscle strength was recorded using a hand-held dynamometer during maximal voluntary isometric contraction (MVIC) testing. Peak linear envelope (peakLE) and total muscle activity (iEMG) were extrapolated and normalized to the MVIC and time cycle for the sit to stand task. Using iEMG, quadriceps-hamstrings muscle co-activation index was calculated for the task. Nonparametric Kruskal Wallace ANOVA tests and Wilcoxon rank sum tests were used to identify where significant (p < 0.05) differences occurred. The DM group had greater iEMG of the ST muscle compared to the CC (p=0.045) and the CON (p=0.015) groups. The CC group had lower iEMG for hamstring muscles compared to the DM (p=0.041) group. The DM group showed lower quadriceps-hamstrings co-activation index compared to the CON group and it approached significance (p=0.054). The CC group had greater anterior pelvis tilt compared to both DM (p=0.043) and the CON (p=0.047) groups. The DM also had larger knee varus angles and less knee internal rotation compared to both groups, however this never reached significance. No significant differences in muscle strength existed between the groups. Higher ST muscle activity in the DM group is explained by the reduction in internal rotation at the knee joint as the ST muscle was more active to resist the varus forces during the sit-to-stand task. Reduced quadriceps activity in the CC group is explained by increased pelvic anterior tilt as this would shorten the moment arm and muscle length in the quadriceps, ultimately reducing quadriceps muscle activity. The reduced co-activation between quadriceps and hamstrings activity in the DM group compared to the CC and CON groups is related to better hip function and stability. Combining lower co-activation and larger range of motion for the DM group without impingement, this implant seems to offer better prevention against THA subluxation and less wear of the implant


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 17 - 17
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting. We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3 mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP tibial translation. Precision within the individual invasive and non-invasive systems measuring AP translation of the tibia was acceptable throughout the range of flexion tested (repeatability coefficient ≤1.6 mm). Agreement between the two systems was acceptable when measuring AP laxity between full extension and 40° knee flexion (repeatability coefficient ≤2.1 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (repeatability coefficient >3 mm). These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard invasive system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative follow-up of ACL pathology


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 18 - 18
1 Apr 2013
Jeevathol A Odedra A Strutton P
Full Access

Background. Alterations in the neural drive to trunk muscles have been implicated in low back pain (LBP). This is supported by evidence of reduced corticospinal excitability, delayed muscle activation, reduced endurance and enhanced fatigability of these muscles; whether these changes persist during pain free periods remain unclear. Neural drive (or voluntary activation-VA) can be measured using twitch interpolation and the aim of this study is to investigate if subjects with a history of LBP show reduced VA. Methods. Twenty five subjects participated (13 with a history of LBP, 12 controls). Back extensor torque was measured using a dynamometer and bilateral electromyographic (EMG) activity was recorded from erector spinae and rectus abdominis. Transcranial magnetic stimulation of the motor cortex was applied while the subject, lying prone, performed graded voluntary back extensions. VA was calculated from the size of the twitches evoked by the TMS and EMG data were analysed for evidence of altered neural drive. Results. The LBP typical VAS pain scores were 3.39±1.76(SD), with worst pain being 5.92±2.29. There were no differences in the physical activity scores between the groups. EMG data revealed no differences in the evoked responses at varying levels of voluntary torque. VA was not significantly different between the LBP and control groups (LBP: 85.30±6.45% vs C: 80.14±11.40%). Discussion. These data show that in our cohort of subjects with a history of LBP, their ability to fully activate their back muscles maximally is not reduced. Whether subjects with current LBP exhibit reduced VA remains to be established. No conflicts of interest. Funded by Imperial College London. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 65 - 65
1 Aug 2012
Gilmour A Richards J Redfern D
Full Access

Several authors have used 3D motion analysis to measure upper limb kinematics, but none have focused solely on wrist movements, in six degrees of freedom, during activities of daily living (ADL). This study aimed to determine the role of the different planar wrist movements during three standardised tasks, which may be affected by surgical procedures. Nine volunteers (age range 22-45) were recruited and each participant performed three simulated ADLs: using a door lever, a door knob and opening/closing a jam jar. The ADLs were simulated using a work-sim kit on an isokinetic dynamometer. Motion analysis was performed by a 10-camera Oqus system (Qualisys Medical AB, Gothenburg, Sweden). All raw kinematic data were exported to Visual3D (C-Motion Inc.), where the biomechanical model was defined and joint kinematics calculated. Table 1 shows a similar range of radial-ulnar deviation and flexion-extension as previous studies. However a substantial amount of wrist rotation also occurred in all tasks. This was significantly greater when using the door lever compared with the door knob and jam jar tasks. Previous studies have stated that a negligible degree of rotation occurs at the wrist. This study found a maximum mean of 31.7 degrees of wrist rotation. This indicates that considerable rotational movement occurs at the wrist during certain functional tasks. Surgical approaches and clinical pathology may disrupt structures responsible for rotational stability. Further investigation of this rotational component of carpal movement during additional ADLs is proposed in both normal and clinical subjects, to explore the potential relationship between carpal surgery and rotational laxity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 137 - 140
1 Jan 2002
Piska M Yang L Reed M Saleh M

An innovative Kirschner (K-) wire point was developed and compared in fresh pig femora in terms of drilling efficiency and temperature elevation with the trochar and diamond points currently used in clinical practice. The tips of thermal couples were machined to the defined geometry and the temperature measured during drilling. Using the same drill speed (rev/min) and feed rate, the new K-wire point produced the lowest thrust force and torque as measured by a Kistler dynamometer. Drill point temperatures were highest with the trochar geometry (129 ± 6°C), followed by the diamond (98 ± 7°C). The lowest temperatures were recorded with the Medin K-wire (66 ± 2°C). On repeated drilling it could be used for up to 30 holes before reaching the less satisfactory drill performance of the diamond tip. The new K-wire provides a better alternative as it requires less effort for insertion, generates less heat and may be re-used


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 357 - 357
1 Jul 2014
Ciampi P Scotti C Peretti G Vitali M Fraschini G
Full Access

Summary Statement. In this study, massive rotator cuff tears were treated using an absorbable collagen-based patch or a non-absorbable synthetic patch. Results demonstrated the efficacy of the use of the synthetic prolene patch especially for elderly patients. Introduction. The treatment of massive rotator cuff tears presents a challenging problem in shoulder surgery. Traditional repair techniques are associated with high rupture rates due to excessive tension on the repair and the presence of degenerated tendon tissue. These factors have led to attempts to reconstruct the rotator cuff with grafts, using synthetic materials or biologic tissues. The purpose of this study was to compare the efficacy of the use of pericardium patch with the use of prolene patch in the repair of extensive rotator cuff tears. Materials & Methods. A retrospective series of 180 patients, 115 men and 65 women with a mean age of 66.8 years treated for a massive rotator cuff tear from 1997 to 2008 is reported. The inclusion criteria were: patients symptomatic with pain, deficit of elevation, not responsive to the physiotherapy, tear size (massive: 2 or more tendons), minimum follow-up of 2 years since surgery, active and motivated patients. Patients were divided into three groups according to the type of treatment received: group 1 was treated with Pericardium patch, group 2 with Prolene patch, group 3 with simple suture. All groups were homogeneous. Plain radiographs, ultrasound and MRI were performed preoperatively and at 3 years. Patients were clinically evaluated using the UCLA score before surgery and at 2 months and 3 years after surgery (mean follow-up 2, 6 years). Pain was assessed by use of VAS scale, strength by the use of dynamometer. The surgical procedure (mini-open technique) was similar in all groups. Statistical analysis was conducted by one-way ANOVA between groups of treatment with Dunnett's C post-hoc correction for multiple comparisons. P-values of 0.05 or less were considered as statistically significant. Results. After 2 months the mean VAS was 6.85±1.11, 6.45±1.01, 4.9±0.9 while the mean UCLA was 11.28±1.43, 13.35±14.21, 20.85±12.77, respectively for Control, Collagen and Prolene group. After 36 months the mean VAS was 3.7±1.01, 4.05±0.98, 3.23±1.07, while the mean UCLA was 14.73±1.96, 14.86±2.08, 24.6±3.3 respectively for Control, Collagen and Prolene group. In addition, after 36 months elevation on the scapular plane was 140.75°±10.48, 141.58°±11.87, 174.75°±8.1 and abduction strength was 8.57kg±0.63, 8.82kg±0.7, 13.61kg±0.84, respectively for Control, Collagen and Prolene group. Retear rate after 12 months was 40% (24/60) for Control group, 48.33% (29/60) for Collagen group, 15% (9/60) for Prolene group. Conclusion. The use of Prolene patch as an augmentation graft in the treatment of massive rotator cuff tears is safe and, in most patients, can give a significant pain relief and improvement of range of motion and strength with few complications


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 56 - 56
1 Aug 2012
Roos P Button K Rimmer P van Deursen R
Full Access

ACL injured patients show variability in the ability to perform functional activities (Button et al., 2006). It is unknown whether this is due to differences in physical capability or whether fear of re-injury plays a role. Fear of re-injury is not commonly addressed in rehabilitation. This study aimed to investigate whether fear of re-injury impacts rehabilitation of ACL injured patients. An initial group of five ACL reconstructed participants (ACLR, age: 30±11 years, weight: 815±115 N, height: 1.74±0.07 m, all male), five ACL deficient participants (ACLD, age: 31±12 years, weight: 833±227 N, height: 1.80±0.11 m, four male and one female), and five healthy controls (age: 30±3 years, weight: 704±126 N, height: 1.70±0.09 m, three male and two female) were compared. Fear of re-injury was assessed using the Tampa Scale for Kinesiophobia (Kvist, 2004). Quadriceps strength was measured on a Biodex dynamometer. Functional activity was assessed by a single legged maximum distance hop (on the injured leg for ACL patients). Motion analysis was performed with a VICON system, and a Kistler force plate. Hop distance was calculated using the ankle position. The peak knee extension moment during landing, and the knee angle at this peak moment were calculated in VICON Nexus. The ACLD group scored worse on the Tampa scale for Kinesiophobia than the ACLR group (32±4 and 26±4). The ACLD patients did not hop as far as the ACLR and control groups (1.0±0.3, 1.3±0.1 and 1.4±0.3 m). The peak knee extension moments during landing were lowest in the ACLD group (263±159 Nm), slightly higher in the control group (354±122 Nm) and highest in the ACLR group (490±222 Nm), while knee flexion angles at these moments were similar (ACLD: 28±11, ACLR: 33±7 and control: 36±13 degrees). The ACLD group had weaker quadriceps than the control group, while the ACLR group was stronger (143±44 Nm, 152±42, and 167±50 Nm respectively). Fear of re-injury and decreased quadriceps strength potentially both impact on the functional performance of ACL injured patients. Rehabilitation of ACL injured patients could therefore be improved by addressing strength and fear of re-injury. Future research with more participants will further clarify this


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength.

Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.