Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 74 - 74
1 Jan 2017
Dasouki M Toby B Alaiya A Saadi I
Full Access

Dupuytren Disease (DD), the most common connective tissue disease in man, presents as a benign fibromatosis of the hands and fingers resulting in the formation of nodules and cords and often leading to flexion contractures in association with keloids or Peyronie disease. Surgical resection of the fibrotic nodules, and more recently intra-lesional collagenase injection are the main therapeutic options for these patients. While the exact cause of DD is still unknown, linkage and Genome Wide Association Studies (GWAS) showed molecular heterogeneity with at least 10 different susceptibility loci 6 of which are close to genes encoding proteins in the Wnt-signaling pathway. We aim to identify the molecular basis of Dupuytren Disease (DD). Twenty patients with Dupuytren disease (including 3 patients with autosomal dominant inheritance, 1 with keloids and congenital torticollis, 2 with Peronie disease), were included in this study. Chromosome Microarray Analysis (CMA), Whole Exome Sequencing (WES) of gDNA and proteomic analysis by LC-Tandem Mass Spectrometry (LC-MSMS) studies were performed. Expression and Network analysis of LCMSMS results was performed using Principal Component Analysis (PCA), ANOVA and Ingenuity Pathway Analysis (IPA). No pathogenic copy number variants (CNVs) were found in CMA (n = 3). WES showed potentially pathogenic variants in POSTN, WNT11, MMP1 and COL3A1. PCA showed three differentially expressed clusters and network-IPA identified ACTB, BAX, COL3A1, FBN1, FN1, MMP1 as potential biomarkers. Comprehensive multi-OMIC analysis of gDNA and tissue proteins in patients with DD identified several connective tissue biomarkers potentially important in the pathogenesis of DD