Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 600 - 603
1 May 2003
Sameda H Takahashi Y Takahashi K Chiba T Ohtori S Moriya H

Dorsal root ganglion neurones with dichotomising axons are present in several species and are considered to play a role in referred pain. Clinically, patients with lesions in the lower lumbar discs occasionally complain of pain in the groin. We investigated the existence of dichotomising afferent neurones projecting axons both to the lumbar disc and to the groin skin, using the double fluorescent-labelling technique in rats. We observed neurones labelled with a tracer applied at the ventral portion of the L5-L6 disc and another tracer placed on the groin skin in L1 and L2 dorsal root ganglia. Our results showed that the double-labelled neurones had peripheral axons which dichotomised into both the L5-L6 disc and the groin skin, indicating the convergence of afferent sensory information from the disc and groin skin. Our findings provide a possible neuroanatomical mechanism for referred groin pain in patients with disc lesions


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 16 - 16
1 Jul 2014
Larsson K Nordborg C Örndal C Brisby H Rydevik B
Full Access

Introduction. In degenerative disorders of the spine such as disc herniation, intervertebral discs can affect neural tissue, which may result in pain as demonstrated in both basic science and clinical investigations. Previous in vitro and in vivo studies have shown that notochordal cells and chondrocyte-like cells in nucleus pulposus affect nervous tissue differently. The aim of the present study was to evaluate the morphology of spinal neural tissue in an in vivo rat model following application of cells derived from nucleus pulposus. Material and method. A disc herniation model in rats (n=58) was used. The L4 nerve root was exposed to a) nucleus pulposus (3mg), b) notochordal cells (25,000 cells) or c) chondrocyte-like cells (25,000 cells). Four control groups were included: 1) application of nucleus pulposus (3 mg) and mechanical displacement of the spinal nerve complex, 2) sham operated animals, 3) application of cell diluent (50 μl) and 4) naïve animals. Seven days after surgery the L4 nerve roots with their dorsal root ganglion were harvested and prepared for blinded neuropathological examinations using light microscopy. Results. Damage and loss of myelinated nerve fibers as well as epineural granulation tissue were most pronounced in the group that had been subjected to nerve root displacement and application of nucleus pulposus. There was significantly less nerve fiber damage in all other groups. The number of myelinated nerve fibers with enlarged outer Schwann cell compartment was significantly higher in all experimental groups as compared to naïve animals, except for animals in which the nerve root complex had been exposed to cell diluent, notochordal cells and chondrocyte-like cells. Discussion and Conclusion. This is the first examination nerve root and dorsal root ganglion morphology after exposure to notochordal cells and chondrocyte-like cells in an in vivo model. The results indicate that application of notochordal cells and chondrocyte-like cells, per se, do not structurally affect the myelinated nerve fibers compared to naïve animals. However, one cannot exclude that there may be physiological effects of notochordal cells and chondrocyte-like cells on nerve tissue in vivo although no morphological differences were observed with the present method. The findings in the present study support previous observations that mechanical nerve tissue displacement and application of nucleus pulposus can induce pronounced morphological nerve tissue changes. However, the combination of mechanical nerve tissue displacement and application of notochordal cells and/or chondrocyte-like cells was not tested. In conclusion, the present study suggests that mechanical nerve tissue displacement is a prerequisite for the induction of morphological changes following application of disc tissue and its components on neural tissue. Summary. The effects of notochordal cells and chondrocyte-like cells on spinal nerve tissue might be dependent on concurrent mechanical nerve tissue deformation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 300 - 300
1 Jul 2014
Miyakawa T Takebayashi T Terasima Y Ohgon I Yamashita T
Full Access

Summary Statement. TRPA1 antagonist reduced spontaneous excitatory postsynaptic currents of substantia gelatinosa neuron in spinal cord dorsal horn by in vivo patch-clamp analysis. TRPA1 may act as a mediator of excitatory synaptic transmission. Introduction. Little is known about the pathophysiological mechanisms of radicular pain. The substantia gelatinosa (SG) in the spinal cord dorsal horn receives primary afferent inputs, which predominantly convey nociceptive sensations. Nociceptive information is modified and integrated in the SG, suggesting that the SG may be a therapeutic target for treating radicular pain. Electrophysiological study using in vivo patch-clamp recording from SG neurons is a useful method to analyze functional properties in synaptic transmission. Transient receptor potential ankyrin 1 (TRPA1) has been widely identified in the central and peripheral nervous system such as peripheral nociceptor, dorsal root ganglion (DRG), and spinal cord dorsal horn, and is considered that they are involved in synaptic transmission of pain. However, it is still unknown about its functional role and mechanism of pain transmission in spinal cord dorsal horn. The purpose of this study is to investigate changes in excitatory synaptic transmission of SG neurons with TRPA1 antagonist and to clarify the potential role of TRPA1 in the rat spinal cord dorsal horn using in vivo patch-clamp analysis. Methods. Male Sprague-Dawley rat were divided into three experimental groups. In the root constriction (RC) group, the right L5 spinal root was ligated proximal to the DRG. The root was exposed only in the sham operation group, and no procedure was performed in the control group. In order to evaluate the excitability of the substantia gelatinosa neuron in the dorsal horn, we recorded excitatory postsynaptic currents (EPSCs) using in vivo whole-cell patch-clamp methods in each groups. Also, to clarify the function of TRPA1, we observed the change of EPSCs with application of TRPA1 antagonist (HC030031). Statistical significance was determined as P < 0.05 using Student's paired t test and one-way analysis of variance (ANOVA) followed by a Tukey–Kramer test. Results. Spontaneous EPSCs (sEPSCs) were increased in the RC group more than in the sham and control group. With application of HC030031, the frequency and amplitude of sEPSCs were significantly reduced in all three groups. The relative frequency and the relative amplitude were 81% and 89% in the RC group, 81% and 94% in the control group, 70% and 88% in the sham group, respectively. There was no statistical significant difference among the three groups. Discussion. The mechanism of synaptic transmission via TRPA1 in the spinal cord dorsal horn is considered that activated TRPA1 cause Ca. 2+. influx into presynaptic terminal and glutamate release from synaptic vesicle onto SG neuron. In the present study, sEPSCs were significantly reduced by TRPA1 antagonist not only in the RC group but also in the control group and sham group, which indicating that some TRPA1 were activated consistently in the rat spinal cord dorsal horn. It is considered that TRPA1 act as a mediator of excitatory transmission, thus, suppressing the activity of TRPA1 may lead to pain relief


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods.

In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days.

Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 554 - 557
1 Apr 2006
Takebayashi T Cavanaugh JM Kallakuri S Chen C Yamashita T

To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1666 - 1672
1 Dec 2007
Mizuno S Takebayashi T Kirita T Tanimoto K Tohse N Yamashita T

A rat model of lumbar root constriction with an additional sympathectomy in some animals was used to assess whether the sympathetic nerves influenced radicular pain. Behavioural tests were undertaken before and after the operation.

On the 28th post-operative day, both dorsal root ganglia and the spinal roots of L4 and L5 were removed, frozen and sectioned on a cryostat (8 μm to 10 μm). Immunostaining was then performed with antibodies to tyrosine hydroxylase (TH) according to the Avidin Biotin Complex method. In order to quantify the presence of sympathetic nerve fibres, we counted TH-immunoreactive fibres in the dorsal root ganglia using a light microscope equipped with a micrometer graticule (10 x 10 squares, 500 mm x 500 mm). We counted the squares of the graticule which contained TH-immunoreactive fibres for each of five randomly-selected sections of the dorsal root ganglia.

The root constriction group showed mechanical allodynia and thermal hyperalgesia. In this group, TH-immunoreactive fibres were abundant in the ipsilateral dorsal root ganglia at L5 and L4 compared with the opposite side. In the sympathectomy group, mechanical hypersensitivity was attenuated significantly.

We consider that the sympathetic nervous system plays an important role in the generation of radicular pain.