Previous studies describing drill trajectory for single incision
A larger radial tuberosity, and therefore a smaller radioulnar space, may cause mechanical impingement of the DBT predisposing to tear. We sought to investigate anatomic factors associated with partial DBT tears by retrospectively reviewing 3-T MRI scans of elbows with partial DBT tears and a normal elbow comparison group 3-T MRI scans of elbows with partial DBT tears and elbows with no known pathology were reviewed retrospectively by two independent observers. Basic demographic data were collected and measurements of radial tuberosity length, radial tuberosity thickness, radio-ulnar space, and radial tuberosity-ulnar space were made using simultaneous tracker lines and a standardised technique. The presence or absence of enthesophytes and the presence of a single or double DBT were noted. 26 3-T MRI scans of 26 elbows with partial DBT tears and 30 3-T MRI scans of 30 elbows without pathology were included. Basic demographic data was comparable between the two groups. The tear group showed statistically significant larger mean measurements for radial tuberosity length (24.3mm vs 21.3mm, p=0.002), and radial tuberosity thickness (5.5mm vs 3.7mm, p=<0.0001. The tear group also showed statistically significant smaller measurements for radio-ulnar space (8.2mm vs 10.0mm, p=0.010), and radial tuberosity-ulnar space (7.2mm vs 9.1mm, p=0.013). There was a statistically significant positive correlation between partial DBT tears and presence of enthesophytes (p=0.007) as well as between partial DBT tears and having two discrete DBTs rather than a single or interdigitating tendon (p=<0.0001). Larger radial tuberosities, and smaller radio-ulnar and radial tuberosity-ulnar spaces are associated with partial DBT tears. This may be due to chronic impingement, tendon delamination and consequent weakness which ultimately leads to tears. Enthesophytes may be associated with tears for the same reason. Having two discrete DBTs that do not interdigitate prior to insertion is also associated with partial tears.
The extracortical single-button (SB) inlay repair is one of the most preferred
Our study aims to demonstrate the efficacy of using endobutton and interference screw technique in the repair of acute distal biceps ruptures. From April 2009 to May 2013, 25 consecutive patients had acute
This is largest collection of outcomes of distal biceps reconstruction in the literature. 8 subjects prospectively measured pre and post reconstruction Strength deficit in patients with chronic tendon deficit is described. To describe outcomes for 53 chronic distal biceps reconstructions with tendon graft. Clinical outcomes as well as strength and endurance in supination and flexion are reported. To examine eight patients measured pre- and post-reconstruction. To identify deficit in supination and flexion in chronic reconstruction. 53 reconstructions of chronic distal biceps with tendon graft were carried out between 1999 and 2015. 26 subjects agreed to undergo strength testing after minimum one year follow up. Eight subjects were tested both before and after reconstruction. Primary outcomes were strength in elbow flexion and forearm supination. Strength testing of supination and flexion included maximum isokinetic power and endurance performed on a Biodex. Clinical outcomes measures included pre-operative retraction severity, surgical fixation technique, postoperative contour, range of motion, subjective satisfaction, SF-12, DASH, MAYO elbow score, ASES and pain VAS Non-parametric data was reported as median (interquartile range), while normally-distributed data was reported as mean with 95% Confidence Limits. Hypothesis testing was performed according to two-tailed, paired t-tests. Median time from index rupture to reconstructions 9.5 (range 3–108) months. Strength measurements were completed at a median follow-up time of 29 (range 12–137) months on 26 subjects. The proportion of patients that achieved 90% strength of the contralateral limb post-reconstruction was 65% (17/26) for peak supination torque, and 62% (16/26) for peak flexion torque. Supination and flexion endurance was 90% of the contralateral arm in 81% (21/26) and 65% (17/26) of subjects, respectively. Ten subjects (39%) achieved 90% strength of the contralateral arm on at least four of five strength tests. Eight of the 26 patients were evaluated pre- and post-surgery. As compared to the contralateral limb, chronic distal biceps rupture was found to have a mean [95%CI] deficit in peak supination torque of 31.0 [21.0, 42.9]% (p=0.002). Mean deficit in peak flexion torque of 34.2 [23.1, 45.4]% (p <0.001). Reconstruction resulted in an increase in peak supination torque of 33.5 [8.7, 58.3]% (p=0.0162), increase in peak flexion torque of 35.0 [6.4, 63.6]% (p=0.023), increase in isometric strength of 57.6 [36.1, 79.1]% (p<0.001), increase in supination endurance of 0.6 [-22.2, 23.4]% (p=0.668), and a decrease in flexion endurance of 4.8 [-23.3, 13.7](p=0.478). Ninety-six percent of the patients (25/26) were satisfied, or very satisfied with the overall outcome of the surgery, while median Mayo score post-reconstruction was 100 (range: 55–100). Chronic
Purpose. Based on anatomic studies, it appears that the short head (SH) and long head (LH) of the