Preoperative planning for Total Hip Arthroplasty has been acknowledged as a vital step to facilitate a successful outcome. Templating ascertains the dimensions and positioning of the implants, minimizing both intraoperative and postoperative complications. The purpose of this study is to compare the accuracy of
Digital radiographs are routinely used for preoperative planning, both in trauma and elective patients; particularly in preoperative templating for total hip replacement. Traditional wisdom holds that radiographs are oversized, though the degree to which this occurs is unclear. Although
In recent years the majority of X-ray departments have moved to a digital format of recording and archiving radiographs. These digital images (as with previous ‘films’) have a built in magnification factor (variable with each patient), which, may cause errors in templating for joint replacement surgery. Placing a marker of known size at the same level as the joint in question allows calculation of the magnification. This may help to restore hip offset in total hip replacement. To establish the magnification factor for digital radiographs taken in our unit. To assess the usefulness of marker images in accurate preoperative templating. Preoperative marker radiographs were identified retrospectively. The apparent size of the marker was measured on digital image. This value was used to calculate the magnification of the image. The scaled X-ray was up loaded to a
Summary Statement. Proximal femoral bony deficits present a surgical and biomechanical challenge to implant longevity in revision hip arthroplasty. This work finds comparable primary stability when a distally fixing tapered fluted stem was compared with a conical design in cadaveric tests. Introduction. Proximal bony deficits complicate revision hip surgery and compromise implant survival. Longer distally fixing stems which bypass such defects are therefore required to achieve stability compatible with bony ingrowth and implant longevity. Aims. It is hypothesised that a tapered stem will provide superior rotational stability to a conical design. This work therefore aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) with that of a conical fluted stem (Restoration®, Stryker). Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent dual energy x-ray absorptiometry and calibration plain-film radiographs were taken.