Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:

Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 51 - 51
1 Nov 2018
Ishibashi T Tomita T Yamazaki T Fujito T Kono K Konda S Tamaki M Yoshikawa H Sugamoto K
Full Access

Bi-cruciate stabilized (BCS) TKA is the prosthesis that aims to substitute bi-cruciate ligament with post-cam engagement. We estimated to describe the in vivo kinematics during deep knee bending in BCS and Cruciate retaining (CR) TKA with the same articular geometry. We analyzed 26 knees who agreed to the current investigation under institutional review board approval. 17 knees were implanted with BCS (Journey ∥BCS, Smith & Nephew. Memphis, US) and 9 knees with CR (Journey∥CR). Each patient was asked to perform deep knee bending under weight-bearing condition. To estimate the spatial position and orientation of the TKA, 2D/3D registration technique with single fluoroscopy was used. We evaluated anteroposterior (AP) translation of the nearest point from femoral component to tibial axial plane for medial and lateral sides, femoral external rotation relative to tibial component and post-cam engagement in BCS. Measurement results were analyzed using Wilcoxon test. Values of P<0.05 were considered statistically significant. Medial AP translation indicated 11.7±5.1% posterior movement in BCS and 4.0±6.6% anterior movement in CR from minimum flexion to 130°. Lateral AP translation indicated 28.9±11.4% posterior movement in BCS and 18.3±6.2% posterior movement in CR from minimum flexion to 130°. Femoral external rotation were observed in both group and the amount of rotation were 5.2°±4.5° in BCS and 8.2°±4.0° in CR. Anterior post-cam engagement was not observed in all cases (76.5%). But medial AP translation in BCS was anteriorly in shallow flexion angles compared to CR. It suggested that anterior post-cam engagement couldn't work in valid


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 87 - 87
1 Apr 2018
Fujito T Tomita T Yamazaki T Futai K Ishibashi T Yoshikawa H Sugamoto K
Full Access

Purpose. This study was to investigate the effect of posterior tibial slope (PTS) on the kinematics in the cruciate-retaining total knee arthroplasty (CR-TKA) using 2- to 3- dimensional registration technique. Material & Methods. A total of 75 knees in 58 patients were recruited and categorized into the following two groups according to PTS. Group A was categorized PTS under 7degrees (n = 33) and group B was categorized PTS over 7 degrees (n = 42). The average age of group A and group B at the time of fluoroscopic surveillance date was 73.5 ± 7.4 years and 74.3 ± 4.5 years, respectively and the average follow-up period from operation date to fluoroscopic surveillance date was 13.8 ± 9.3 months and 16.7 ± 8.6 months, respectively. In vivo kinematics during sequential deep knee bending under weight-bearing condition were evaluated using fluoroscopic image analysis and 2- to 3- dimensional registration technique. Range of motion (ROM), axial rotation, anteroposterior (AP) translations of medial and lateral nearest points of the femoral component relative to the tibial component were measured and compared between the two groups. The nearest points were determined by calculating the closest distance between the surfaces of femoral component model and the axial plane of coordinate system of the tibial component. We defined external rotation and anterior translation as positive. P values under 0.05 was defined as statistically significant. Results. The mean PTS in group A and B were 5.5 ± 1.4°and 9.9 ± 1.9°, respectively. There was no statistically significant difference in the degrees of axial rotation from 0° to 110° of flexion between the two groups (4.9 ± 4.2° vs 5.2 ± 4.2°, p > 0.05), respectively. The hyperextension of group B were significantly larger than group A (−2.3 ± 6.6°vs −9.8 ± 8.7°, p <0.05). The ROM of group B were significantly larger than group A (118.7 ± 10.8°vs 128.7 ± 17.7°, p <0.05). However, there was no significant difference in the maximum flexion between the two groups (116.4 ±10.8°vs 118.9±14.5°, p >0.05), respectively. In terms of AP translation, medial nearest points were located significantly more posterior at 0°, 10°, 30°, 40° of flexion in group B compared to group A. There was no significant difference in the location of lateral nearest points between the two groups during all knee range of motion. Discussion/Conclusion. The results shown in this study demonstrated that the PTS influenced the kinematics and ROM under weight-bearing condition in CR-TKA. The large PTS induced great posterior displacement of medial nearest points during early flexion phase and increased hyperextension between the femoral and tibial components


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 167 - 167
1 Jul 2014
Iwamoto K Tomita T Yamazaki T Sasaki A Kii Y Futai K Miyamoto T Fujii M Yoshikawa H Sugamoto K
Full Access

Summary. The effect of the geometry of the tibial polyethylene insert was investigated in vivo loaded conditions. Introduction. The decision to choose CR (cruciate retaining) insert or CS (condylar stabilised) insert during TKA remains a controversial issue. Triathlon CS type has a condylar stabilised insert with an increased anterior lip that can be used in cases where the PCL is sacrificed but a PS insert is not used. The difference of the knee kinematics between CR and CS insert remains unclear. This study measured knee kinematics of deep knee flexion under load in two insert designs using 2D/3D registration technique. Patients and Methods. We investigated the in vivo knee kinematics of 20 knees (18 patients) implanted with Triathlon CR components (Stryker Orthopedics, Mahwah, NJ), 10 knees in the CR insert with retaining PCL, and 10 knees in the CS insert with sacrificing PCL. All TKAs were judged clinically successful (Knee Society knee scores >90), with no ligamentous laxity or pain. Mean patient age at the time of operation was 72±12 years in CR and 69±9 years in CS. Mean period between operation and surveillance was 20±11 months in CR and 11±5 months in CS. Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. Femorotibial motion including tibial polyethylene insert was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the range of motion, femoral axial rotation, and antero-posterior (AP) translation of the nearest points. Results. The average range of motion between femoral component and tibial component was 113.3±22.3° in CR and 107.4±13.1° in CS. The amount of femoral axial rotation from 0° to 110° flexion was 8.6±2.9° in CR insert, and 7.6±2.6° in CS insert, respectively. No significant difference was observed in the amount of femoral external rotation (p=0.71). In CR insert, the medial contact point moved 4.0±2.9mm anteriorly from 0° to 100° flexion. The lateral contact point moved 2.0±1.1mm anteriorly from 60° to 90° flexion. In CS insert, the medial contact point moved 6.4±2.1mm anteriorly from 20° to 100° flexion. The lateral contact point moved 1.9±1.7mm anteriorly from 50° to 110° flexion. There was significant differences were observed in the amount of medial anterior translation between the two insert (medial; p=0.04, lateral; p=0.94). Discussion and Conclusion. Triathlon CR and CS insert had a similar kinematics pattern. However, there was significant differences were observed in the amount of medial anterior translation between the two insert. These results indicated that the increased anterior lip could not control medial anterior sliding. The posterior part of the two insert were almost same, so the kinematics are similar