Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 8 - 8
1 May 2017
Barlow T Scott P Griffin D Realpe A
Full Access

Background. There is a 20% dissatisfaction rate with knee replacements. Calls for tools that can pre-operatively identify patients at risk of being dissatisfied postoperatively have been widespread. However, it is unclear what sort of information patients would want from such a tool, how it would affect their decision making process, and at what part of the pathway such a tool should be used. Methods. Using focus groups involving 12 participants and in-depth interviews with 10 participants, we examined the effect outcome prediction has by providing fictitious predictions to patients at different stages of treatment. A qualitative analysis of themes, based on a constant comparative method, is used to analyse the data. This study was approved by the Dyfed Powys Research Ethics Committee (13/WA/0140). Results. Our results demonstrate several interesting findings. Firstly, patients who have received information from friends and family are unwilling to adjust their expectation of outcome down (i.e. to a worse outcome), but highly willing to adjust it up (to a better outcome). This is an example of the optimism bias, and suggests the effect on expectation of any poor outcome prediction would be blunted. Secondly, patients generally wanted a “bottom line” outcome, rather than lots of detail. Thirdly, patients who were earlier in their treatment for osteoarthritis were more likely to find the information useful, and for it to affect their decision, than patients later in their pathway. Conclusion. An outcome prediction tool would have most effect targeted towards people at the start of their treatment pathway, with a “bottom line” prediction of outcome. However, any effect on expectation and decision making of a poor outcome prediction is likely to be blunted by the optimism bias. Level of Evidence. 4


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 121 - 121
1 Jan 2017
Girolami M Babbi L Gasbarrini A Barbanti Brodano G Bandiera S Terzi S Ghermandi R Boriani S
Full Access

Spinal infections are rare diseases, whose management highlights the importance of a multidisciplinary approach. Although treatment is based on antibiotics, always selected on coltural and antibiogram tests, surgery is required in case of development of spinal instability or deformity, progressive neurological deficits, drainage of abscesses, or failure of medical treatment. The first step of the algorithm is diagnosis, that is established on MRI with contrast, PET/CT scan, blood tests (CRP and ESR) and CT-guided needle biopsy. Evaluation of response to the specific antibiotic therapy is based on variations in Maximum Standardized Uptake Value (SUVmax) after 2 to 4 weeks of treatment. In selected cases, early minimally invasive surgery was proposed to provide immediate stability and avoid bed-rest. From 1997 to 2014, 182 patients affected by spinal infections have been treated at the same Institution (Istituto Ortopedico Rizzoli – Bologna, Italy) according to the proposed algorithm. Mean age was 56 years (range 1 – 88). Male to female ratio was 1.46. Minimum follow-up was 1 year. Infections were mostly located in the lumbar spine (57%) followed by thoracic (37%) and cervical spine (6%). Conservative treatment based on antibiotics needed surgery (open and/or percuteneous minimally invasive) as an adjuvant in 83 patients out of 182 (46%). Management of spinal infections still remains a challenge in spinal surgery and a multisciplinary approach is mandatory. This algorithm represents the shared decision- making process from diagnosis to the most appropriate treatment and it led to successful outcomes with a low-complication rate. We present this algorithm developed to organize the various professionals involved (orthopaedic surgeons, nuclear medicine and infective disease specialists, interventional radiologists and anaestesiologists) and set a shared pathway of decision making in order to uniform the management of this complex disease


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 111 - 111
1 Jan 2017
Menichetti A Gargiulo P Gislason M Edmunds K Hermannsson T Jonsson H Esposito L Bifulco P Cesarelli M Fraldi M Cristofolini L
Full Access

Total Hip Replacement (THR) is one of the most successful operations in all of medicine, however surgeons just rely on their experience and expertise when choosing between cemented or cementless stem, without having any quantitative guidelines. The aim of this project is to provide clinicians with some tools to support in their decision making. A novel method based on bone mineral density (BMD) measurements and assessments was developed 1) to estimate the periprosthetic fracture risk (FR) while press-fitting cementless stem; 2) to evaluate post-operative bone remodeling in terms of BMD changes after primary THR. Data for 5 out of over 70 patients (already involved in a previous study. 1. ) that underwent primary THA in Iceland were selected for developing novel methods to assess intra-operative FR and bone mineral density (BMD) changes after the operation. For each patient three CT images were acquired (Philips Brilliance 64 Spiral-CT, 120 kVp, slice thickness: 1 mm, slice increment: 0.5 mm): pre-op, 24 hours and 1 year post-operative. Pre-op CT scan was used to create 3D finite element model (Materialise Mimics) of the proximal femur. The material properties were assigned based on Hounsfield Units. Different strategies were analyzed for simulating the press-fitting operation, developing what has already been done in prior study. 1. In the finite element simulation (Ansys Workbench), a pressure (related to the implant hammering force of 9.25 kN. 2. ) was applied around the femur's hollow for the stem and the distribution of maximum principal elastic strain over the bone was calculated. Assuming a critical failure value. 3. of 7300 με, the percentage of fractured elements was calculated (i.e. FR). Post 24 hours and Post 1 year CT images were co-registrated and compared (Materialise Mimics) in order to assess BMD changes. Successively, volumes of bone lost and bone gained were calculated and represented in a 3D model. Age and gender should not be taken as unique indicators to choose between implants typologies, since also three dimensional BMD distribution along with volume of cortical bone influence the risk of periprosthetic fractures. Highest FR values were experienced in the calcar-femorale zone and in similar location on the posterior side. BMD loss volume fractions after 1 year were usually higher than BMD gain ones. Consistently with prior studies. 4. , BMD loss was mainly concentrated around the proximal end (lesser trochanter area, outer bone). If present, BMD gain occurred at the distal end (below stem's tip) or proximally (lesser trochanter area, interface contact with the stem). The use of clinical data for BMD assessments serves as an important tool to develop a quantitative method which will support surgeons in their decisions, guiding them to the optimal implant for the patient. Knowing the risk of fracture if choosing a cementless stem and being aware of how the bone will remodel around the stem in one year's time can eventually lead to reduction in revisions and increased quality of life for the patient. Further work will target analysis of a larger cohort of patients and validate FE models


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 93 - 93
1 Jan 2017
Moore A Whitehouse M Blom A Gooberman-Hill R
Full Access

Around 1% of total hip replacements are follow by prosthetic joint infection (PJI). There is uncertainty about best treatment method for PJI, and the most recent high quality systematic reviews in unselected patients indicates that re-infection rates following one-stage and two-stage revision arthroplasty are relatively similar. In the absence of evidence randomised controlled trials will help to identify the most clinically and cost-effective treatment for PJI. Before such trials are conducted, there is a need to establish reasons for current practice and to identify whether trials are feasible. This study aimed to deliver research that would inform trial design. Specifically, we aimed to characterise consultant orthopaedic surgeons' decisions about performing either one-stage or two-stage exchange arthroplasty for patients with PJI after hip replacement and to identify whether a randomised trial comparing one-stage with two-stage revision would be possible.

Semi-structured interviews were conducted with 12 consultant surgeons from 5 high-volume National Health Service (NHS) orthopaedic departments in the UK. Surgeons were sampled on the basis that they perform revision surgery for PJI after hip arthroplasty and final sample size was justified on the basis of thematic saturation. Surgeons were interviewed face-to-face (n=2) or via telephone (n=10). The interview study took place before design of a multicentre prospective randomised controlled trial comparing patient and clinical outcomes after one-stage or two-stage revision arthroplasty. Data were audio-recorded, transcribed, anonymised and analysed using a thematic approach, with 25% of transcripts independently double-coded.

Results: There is no standard surgical response to the treatment of PJI and surgeons manage a complex balance of factors when choosing a surgical strategy. These include multiple patient-related factors, their own knowledge and expertise, available infrastructure and the infecting organism. Surgeons questioned whether evidence supports the emergence of two-stage revision as a method. They described the use of loosely cemented articulating spacers as a way of managing uncertainty about best treatment method. All surgeons were supportive of a randomised trial to compare one-stage and two-stage revision surgery for PJI after hip replacement. Surgeons reported that they would put patients forward for randomisation when there was uncertainty about best treatment.

Surgeons highlighted the need for evidence to support their choice of revision. Some surgeons now use revision methods that can better address both clinical outcomes and patients' quality of life, such as loosely cemented articulating spacers. Surgeons thought that a randomised controlled trial comparing one-stage and two-stage exchange joint replacement is needed and that randomisation would be feasible. The next stage of the work was to design a multi-centre randomised controlled trial, this has been achieved and the trial is now ongoing in the UK.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 96 - 96
11 Apr 2023
Crippa Orlandi N De Sensi A Cacioppo M Saviori M Giacchè T Cazzola A Mondanelli N Giannotti S
Full Access

The computational modelling and 3D technology are finding more and more applications in the medical field. Orthopedic surgery is one of the specialties that can benefit the most from this solution. Three case reports drawn from the experience of the authors’ Orthopedic Clinic are illustraded to highlight the benefits of applying this technology. Drawing on the extensive experience gained within the authors’ Operating Unit, three cases regarding different body segments have been selected to prove the importance of 3D technology in preoperative planning and during the surgery. A sternal transplant by allograft from a cryopreserved cadaver, the realization of a custom made implant of the glenoid component in a two-stage revision of a reverse shoulder arthroplasty, and a case of revision on a hip prosthesis with acetabular bone loss (Paprosky 3B) treated with custom system. In all cases the surgery was planned using 3D processing software and models of the affected bone segments, printed by 3D printer, and based on CT scans of the patients. The surgical implant was managed with dedicated instruments. The use of 3D technology can improve the results of orthopedic surgery in many ways: by optimizing the outcomes of the operation as it allows a preliminary study of the bone loss and an evalutation of feasibility of the surgery, it improves the precision of the positioning of the implant, especially in the context of severe deformity and bone loss, and it reduces the operating time; by improving surgeon training; by increasing patient involvement in decision making and informed consent. 3D technology, by offering targeted and customized solutions, is a valid tool to obtain the tailored care that every patient needs and deserves, also providing the surgeon with an important help in cases of great complexity


In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex revision total knee & hip arthroplasty with custom-made 3D printed implants in a safe and timely manner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 36 - 36
17 Apr 2023
Davidson D Spratt D Liddle A
Full Access

Prosthetic joint infection (PJI) is an important cause of arthroplasty failure. There is no method to disclose the presence or map the distribution of the in vivo biofilm on infected arthroplasty despite the recognition that such a tool would aid intraoperative decision making and improve novel implant design. The aim of this study was to test the efficacy of four dyes to disclose bacterial biofilm in an in vitro setting. Four dyes with known affinity to bacterial biofilm were assessed to determine their efficacy to disclose biofilms in an in vitro model of PJI. Three dyes (Methylene Blue, Indocyanine Green and Rose Bengal) have established clinical utility and the other, Thioflavin T, is known to fluoresce in the presence of amyloid a known biofilm constituent. The efficacy of the dyes to discriminate between biofilms of different mass and vitality (high, low or the non-inoculated control) was determined after three minutes exposure of the biofilm to the dyes by calculating the amount of dye bound to the biofilm via sonication and spectrophotometry, quantification of the dye through standardised photographic imaging of the stained biofilm and the calculation of inter-observer agreement. Each experiment was performed in triplicate for each dye and repeated three times. For each of the disclosure dyes assessed there was significant difference demonstrated between the amount of dye bound to the high and low mass biofilms (p<0.05) as well as in the amount of dye quantified in photographic and fluorescent image assessment between biofilms of differing mass (p<0.01). There was excellent agreement between three observers, for each disclosure dye, in determining the biofilm mass of each stained disc (Kappa>0.91). This study demonstrates the efficacy of biofilm disclosure dyes in an in vitro PJI model which could one day be used to disclose and map the clinical biofilm in vivo


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 31 - 31
2 Jan 2024
Ernst M Windolf M Varjas V Gehweiler D Gueorguiev-Rüegg B Richards R
Full Access

In absence of available quantitative measures, the assessment of fracture healing based on clinical examination and X-rays remains a subjective matter. Lacking reliable information on the state of healing, rehabilitation is hardly individualized and mostly follows non evidence-based protocols building on common guidelines and personal experience. Measurement of fracture stiffness has been demonstrated as a valid outcome measure for the maturity of the repair tissue but so far has not found its way to clinical application outside the research space. However, with the recent technological advancements and trends towards digital health care, this seems about to change with new generations of instrumented implants – often unfortunately termed “smart implants” – being developed as medical devices. The AO Fracture Monitor is a novel, active, implantable sensor system designed to provide an objective measure for the assessment of fracture healing progression (1). It consists of an implantable sensor that is attached to conventional locking plates and continuously measures implant load during physiological weight bearing. Data is recorded and processed in real-time on the implant, from where it is wirelessly transmitted to a cloud application via the patient's smartphone. Thus, the system allows for timely, remote and X-ray free provision of feedback upon the mechanical competence of the repair tissue to support therapeutic decision making and individualized aftercare. The device has been developed according to medical device standards and underwent extensive verification and validation, including an in-vivo study in an ovine tibial osteotomy model, that confirmed the device's capability to depict the course of fracture healing as well as its long-term technical performance. Currently a multi-center clinical investigation is underway to demonstrate clinical safety of the novel implant system. Rendering the progression of bone fracture healing assessable, the AO Fracture Monitor carries potential to enhance today's postoperative care of fracture patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 11 - 11
2 Jan 2024
Petrucci G Papalia GF Russo F Ambrosio L Papalia R Vadalà G Denaro V
Full Access

Chronic low back pain (CLBP) is the most common cause of disability worldwide, and lumbar spine fusion (LSF) is often chosen to treat pain caused by advanced degenerative disease when clinical treatment failed certain cases, the post-surgical outcomes are not what was expected. Several studies highlight how important are. In psychological variables during the postoperative spine surgery period. The aim of this study is to assess the role of preoperative depression on postoperative clinical outcomes. We included patients who underwent LSF since December 2021. Preoperative depression was assessed administering Beck Depression Inventory questionnaire (BDI). And pain and disability were evaluated at 1, 3, and 6 months, administering respectively Visual Analogic Scale (VAS) and Oswestry Disability Index (ODI). As statistical analysis Mann-Whitney test was performed. We included 46 patients, 20 female (43,5%) and 26 male (56,5%) with an average age of 64,2. The population was divided in two groups, fixing the BDI cut-off point at 10. Patients with BDI < 10 points (N=28) had normal mental health status, instead patients with BDI > 10 points (N=16) had depressive disorders. At 3 months patients with healthy mental status reported statistically significant reduction of pain (U = 372,5, p = .006) and improvement of disability but without statistical significancy (U = 318, p = 0,137). At 6 months patients without psychological disease reported statistically significant reduction of pain (U = 342, p = 0,039) and disability (U = 372,5, p = 0,006). This study demonstrates the correlation between pre-existing depressive state and poorer clinical outcomes after spine surgery. These results are consistent with the literature. Therefore, during the surgical decision making it is crucial to take psychological variables into account in order to predict the results after surgery and inform patients on the potential influence of mental status


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 58 - 58
1 Dec 2021
Arshad Z Maughan HD Kumar KHS Pettit M Arora A Khanduja V
Full Access

Abstract. Purpose The aim of this study was investigate the relationship between version and torsional abnormalities of the acetabulum, femur and tibia in patients with symptomatic FAI. Methods A systematic review was performed according to PRISMA guidelines using the EMBASE, MEDLINE, PubMed and Cochrane databases. Original research articles evaluating the described version and torsional parameters in FAI were included. The MINORS criteria was used to appraise study quality and risk of bias. Mean version and torsion values were displayed using forest plot and the estimated proportion of hips displaying abnormalities in version/torsion were calculated. Results. A total of 1206 articles were identified from the initial search, with 43 articles, involving 8,861 hips, meeting the inclusion criteria. All studies evaluating femoral or acetabular version in FAI reported ‘normal’ mean version values (10. 0. to 25. 0. ). However, distribution analysis revealed that an estimated 31% and 51% of patients with FAI displayed abnormal central acetabular and femoral version respectively. Conclusion. Up to 51% of patients presenting with symptomatic FAI show an abnormal femoral version, whilst up to 31% demonstrate abnormal acetabular version. This high percentage of version abnormalities highlights the importance of evaluating these parameters routinely during assessment of patients with FAI, in order to guide clinical decision making


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 3 - 3
1 Jan 2017
Gislason M Menichetti A Edmunds K Hermannsson T Jonsson H Esposito L Bifulco P Cesarelli M Fraldi M Garigiulo P
Full Access

Many surgical decisions taken in the operating theatre are based on the experience and the expertise of the surgeon. Using biomechanical and computational data can provide additional information for the surgeon. By carrying out biomechanical trials pre-operatively as well as a full three dimensional analysis of the skeletal structure of the patient, it is possible to provide the surgeon with clinical data that can support the decision making with regards of fixation method, type of implant and size to name a few. In the presented project a description is provided of the pre-operative assessment of primary total hip patients in Iceland and how the analysis is helping to prevent periprosthetic fractures. Over 70 patients undergoing primary total hip arthroplasty in Iceland were recruited for the study. 1. Gait analysis was performed on the patients using a pressure plate in conjunction with two synchronised video cameras. In addition, EMG was recorded from three muscles: Rectus femoris, Vastus lateralis and Vastus medialis on both the healthy and the operated leg. Finally the patient was CT-scanned with an in-plane resolution of 0.5mm and slice thickness of 1mm. Three dimensional objects of both the femur and muscles were created based on the scans. The material properties were derived from the Hounsfield units. Finite element analysis was carried out on the femur and the fracture risk of press fitting procedure was calculated and areas of weak points in the bone identified. Analysis was carried out on the muscles and the volume distribution between fat, connective tissue and muscle tissue calculated. The results showed that basing fixation method on age and sex may not necessarily be a good indicator. The three dimensional bone mineral density distribution and the relative volume of cortical bone provided a better indication of which patients should receive cemented implant. Using a strain based failure criteria on the finite element models showed increased number in failed elements with decreased volume of cortical bone. The results of the biomechanical assessment for each patient were finally collected using an automatic report which was presented to the clinician. Using biomechanical assessment and modelling can help identify an optimal treatment method for total hip patients by giving surgeons quantitative data on which they can build their decision making in the operating theatre. This can eventually lead to reduction in revisions and increased quality of life for the patient


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 60 - 60
1 Mar 2021
Aldawsari K Alotaibi MT AlSaleh K
Full Access

Spondylolisthesis is common recognized spine pathology. A lot of studies targeted spondylolisthesis in the recent years, few of which have made a major influential impact on the clinical practice. To the extent our knowledge this is the first study to highlight and analyze the top 100 cited articles on spondylolisthesis through a systematic search strategy used previously in published studies in different medical specialty. The aim of this study is to identify the most cited studies on spondylolisthesis and report their impact in spine field. Thomson Reuters Web of Science-Science Citation Index Expanded was searched using title-specific search “spondylolisthesis”. All studies published in English language between 1900 and 2019 were included with no restrictions. The top 100 cited articles were identified using “Times cited” arranging articles from high to low according to citation count. Further analysis was made to obtain the following items: Article title, author's name and specialty, country of origin, institution, journal of publication, year of publication, citations number, study design. The citation count of the top 100 articles ranged from 69 to 584. All published between 1950 – 2016. Among 20 journals, Spine had the highest number of articles 47, with citation number of 5964 out of 13644. Second ranked was Journal of Bone and Joint Surgery with 16 articles and a total citation of 3187. In respect to the primary author's specialty, Orthopedic surgeons contributed to the majority of top 100 list with 82 articles, Neurosurgery was the second specialty with 10 articles. United states had produced more than half of the list by 59 articles. England was the second country with 7 articles. Surgical management of lumbar spondylolisthesis was the most common discussed topic. This article identifies the top 100 influential papers on spondylolisthesis and recognizes an important aspect of knowledge evolution served by leading researchers as they guide today's clinical decision making in spondylolisthesis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 56 - 56
1 Apr 2018
Hettwer W
Full Access

Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction concept based on biological enhancement of optimal therapeutic agent-carrier composites and provides a rationale for an individual, requirement-specific adaptation of a truly patient-specific reconstruction of bone defects. It represents the pinnacle of the bone defect reconstruction pyramid, founded on the basic principles and prerequisites of complete elimination of the underlying pathology, preservation, augmentation or restoration of mechanical stability of the treated bone segment and creation of a biodegradable scaffold with adequate mechanical integrity. It summarises the current body of relevant experimental and clinical research, presents clinical case examples illustrating the various aspects of the proposed concept as well as early clinical results. The author hopes that the theoretical and conceptual framework provided, will help guide future research as well as clinical decision making with respect to this particular field


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2016
Griffin M Annan J Hamilton D Simpson A
Full Access

3D imaging is commonly employed in the surgical planning and management of bony deformity. The advent of desktop 3D printing now allows rapid in-house production of specific anatomical models to facilitate surgical planning. The aim of this pilot study was to evaluate the feasibility of creating 3D printed models in a university hospital setting. For requested cases of interest, CT DICOM images on the local NHS Picture Archive System were anonymised and transferred. Images were then segmented into 3D models of the bones, cleaned to remove artefacts, and orientated for printing with preservation of the regions of interest. The models were printed in polylactic acid (PLA), a biodegradable thermoplastic, on the CubeX Duo 3D printer. PLA models were produced for 4 clinical cases; a complex forearm deformity as a result of malunited childhood fracture, a pelvic discontinuity with severe acetabular deficiency following explantation of an infected total hip replacement, a chronically dislocated radial head causing complex elbow deformity as a result of a severe skeletal dysplasia, and a preoperative model of a deficient proximal tibia as a result of a severe tibia fracture. The models materially influenced clinical decision making, surgical intervention planning and required equipment. In the case of forearm an articulating model was constructed allowing the site of impingement between radius and ulnar to be identified, an osteotomy was practiced on multiple models allowing elimination of the block to supination. This has not previously been described in literature. The acetabulum model allowed pre-contouring of a posterior column plate which was then sterilised and eliminated a time consuming intraoperative step. While once specialist and expensive, in house 3D printing is now economically viable and a helpful tool in the management of complex patients


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 5 - 5
1 Apr 2014
Holloway N Kokkinakis M Duncan R
Full Access

We noted, in the immature ankle, a discrepancy between the alignment of the distal tibial physis, the distal tibial articular surface and the talar dome in the coronal plane. This led to variability in the orientation of wires and half pins used for limb reconstruction depending on which landmark was used. We aimed to investigate the variability in normal ankle joints to determine which is the most reliable landmark to use for correct wire or pin insertion. Radiographs of the ankle of 98 children were analysed. A variety of angular measurements were made with respect to the axis of the tibia and classified according to methods described by Shapiro & Mulhotra. We investigated the inter- and intra-observer variation in these measurements and classifications. Using the Bland-Altman method we found that the talar plafond angle (TPA) showed less variation than the lateral distal tibial angle (LDTA) with narrower limits of agreement and coefficients of repeatability. This was the same across the age and gender groups studied. The Shapiro classification of distal tibial epiphyseal shape did not appear to correlate with age or gender, but showed more inter- and intra-rater variation using weighted Kappa analysis. This study suggests that when measuring the orientation of the ankle joint from plain radiographs that the TPA is a more reliable measurement than the LDTA and this should be taken into consideration during decision making and pre-operative planning of lower limb deformity correction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 63 - 63
1 Aug 2013
Wallace DT Jane MJ Findlay H Mahendra A
Full Access

Most lumps found in the extremity are benign. Some, however, are not. An approach to tertiary referral is required to accommodate the need for specialist evaluation of all concerning lumps, while maintaining an acceptable time to diagnosis and definitive management. We describe a new approach to tertiary sarcoma service, utilising modern communication technology and the “virtual clinic” approach. Methods. Data from 1053 consecutive patients referred to the MSK oncology service at Glasgow Royal Infirmary between January 2010 and August 2012 was prospectively collected. Results. All suspected musculoskeletal sarcoma cases were discussed referred to our tertiary sarcoma virtual clinic were discussed. Mean time from referral to clinic for the 625 patents referred from January 2011 was 5.1 days. 41% of referrals came from out-with our health trust. 28.3% of patients were discharged from the virtual clinic without need for physical appointment. 45.8% were sent for further investigation prior to first clinic appointment, with the remaining 25.5% given an urgent clinic appointment. Final diagnoses of soft tissue tumours, bone tumours and “tumour like conditions” were present in almost equal parts. 358 patients (34%) of patients went on to have surgery, with 59 malignant soft tissue and 53 malignant bone tumours over this time period. Conclusions. Through an early, virtual clinic approach to tertiary sarcoma care, a third of referrals have been managed quickly without the need for an unnecessary appointment for the patient. For a further 45% of patients the first appointment will be after all necessary investigations have been performed to facilitate rapid decision making. This enables shorter clinic waiting times and rapid transition from first referral to definitive management


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 9 - 9
1 Apr 2013
Langridge N Roberts L Pope C
Full Access

Purpose of study. To explore the clinical reasoning strategies used by extended scope physiotherapists (ESPs) when assessing patients with low back pain. Background. Extended scope physiotherapists commonly work in back pain services and their training emphasises the acquisition of clinical skills and possible diagnostic tests (including MRI) to aid clinical reasoning and diagnosis. Whilst there has been some exploration of reasoning strategies of other professional groups (notably medically qualified) to date, the clinical reasoning strategies of ESP clinicians have not been reported. Methods. A qualitative study, with three focus groups, explored clinical reasoning by ESPs and non-ESPs, to compare how these clinicians assess patients' with back pain. This informed a second study, using a ‘think-aloud’ technique with 10 participants from four NHS sites, examining their reasoning strategies, immediately after completing initial consultations. Analysis was informed by a grounded theory approach. Results. Themes identified relating to clinical reasoning were prior thinking, patient interaction, gut-feeling, and formal testing. The differences in practice between ESP and non-ESP appeared to be driven by differences in accountability, safety and external influences. A key difference between the accounts of clinical reasoning provided by ESPs and non-ESPs centred on the role and appropriateness of ‘gut feeling’ in diagnostic decision making. The analysis explores the apparent tension between this instinctive contribution to reasoning and evidence-based practice. The paper explores the legitimacy of gut feeling. Conclusions. Extended scope physiotherapists appear to employ different clinical reasoning strategies to their non-ESP colleagues, highlighting the additional burden of responsibility and tension created by the use of gut feeling. No conflicts of interest. No funding obtained. This abstract has not been previously published in whole or in part; nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 5 - 5
1 Jan 2013
Ngunjiri A Underwood M Patel S
Full Access

Aims. 1. To develop a decision aid - Decision Support Package (DSP) - that will provide low back pain (LBP) patients, and their treating physiotherapists with information on the treatment options available to the patients. 2. To develop a training package for physiotherapists on how to use the DSP. 3. To encourage and evaluate the informed shared decision making (ISDM) process between patients and physiotherapists during consultation. Method. We developed a DSP informed by existing research and collaboration with physiotherapists, patients and experts in the field of decision aids and LBP. We did six pieces of exploratory work: literature review; 2009 NICE LBP guidelines review; qualitative screening of transcripts of interviews of LBP patients; focus groups (patients); nominal group (physiotherapists), and Delphi study (experts). We collated these data to develop the DSP. We also developed a training package for physiotherapists. Results. We developed a LBP patient resource for use prior to their first consultation and a training package for physiotherapists. The DSP contained information on acupuncture, structured group exercise, manual therapy and cognitive behavioural approach. LBP patients would expect these treatment options to be offered to them at their initial consultation. The training package for physiotherapists was on DSP use and communication skills during consultation. Conclusion. We have developed an evidence and theory informed Decision Support Package and physiotherapists training. We are currently piloting its use in one NHS Trust prior to running a pilot RCT (N=150) to test is effect on improving patient satisfaction with LBP patients' treatment choices. Conflicts of Interest. None. Source of Funding. National Institute for Health Research- Research for Patient Benefit (NIHR-RfPB). This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 55 - 55
1 Aug 2012
Rimmer P Roos P Button K Sparkes V Van Deursen R
Full Access

Evidence suggests that anterior cruciate ligament (ACL) injured individuals do not use the same movement strategies as healthy individuals. It is unknown how this may affect them in more challenging activities of daily living and sport. The aim of this study is to evaluate how ACL injured patients perform a single leg squat (SLS) compared to healthy controls. SLS was evaluated as it is more challenging than gait and therefore more relevant to clinical decision making about progressing to sporting maneuvers. To date, 6 ACL deficient (ACLD) (5 males, 1 female; mass=88±22 kg; height=1.78±0.11 m; age=35±11 years), 5 ACL reconstructed (ACLR) (5 males; mass= 83±12 kg; height=1.74±0.07 m; age=29±10 years) and 5 controls (3 males, 2 females; mass= 72±13 kg; height=1.70±0.09 m; age=30±3 years) performed a SLS on the injured leg for the ACL injured participants and the dominant leg for the control group. Motion analysis was performed using a Vicon Nexus system and a Kistler force platform. Knee extension moments and angles were calculated using Vicon Nexus software. The ACLD group had reduced peak flexion angles compared to ACLR and control groups (65±5, 77±7 and 82±9 degrees respectively). Peak extension moments were similar across all groups (ACLD= 0.94±0.26 Nm/kg, ACLR=1.06±0.37 Nm/kg, control=1.04±0.36 Nm/kg). Peak knee moments occurred just after peak flexion and therefore at a smaller flexion angle for the ACLD group compared to the ACLR and control group (59±13, 75±7 and 80±6 degrees). Extension moments were similar when evaluated at a consistent angle of 50 degrees (ACLD=0.70±0.30Nm/kg, ACLR=0.63±0.34Nm/kg control=0.61±0.32Nm/kg). In this sample, the controls squatted deepest followed by the ACLR group, with the ACLD group squatting least deep. This did not translate to an identical pattern for the knee extensor moments. Performance of ACL injured individuals needs to be evaluated on more challenging tasks to fully assess recovery. Further research, with more subjects, will clarify if ACLD individuals are using a strategy to protect their knee or if others factors are preventing them from squatting deeper. This would suggest that these individuals may not have fully recovered and will not be able to perform more challenging activities