Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern machine learning methods, where large, complex datasets can be used to identify patterns in the data. Using these
During OA the homeostasis of healthy articular chondrocytes is dysregulated, which leads to a phenotypical transition of the cells, further influenced by external stimuli. Chondrocytes sense those stimuli, integrate them at the intracellular level and respond by modifying their secretory and molecular state. This process is controlled by a complex interplay of intracellular factors. Each factor is influenced by a myriad of feedback mechanisms, making the prediction of what will happen in case of external perturbation challenging. Hampering the hypertrophic phenotype has emerged as a potential therapeutic strategy to help OA patients (Ripmeester et al. 2018). Therefore, we developed a computational model of the chondrocyte's underlying regulatory network (RN) to identify key regulators as potential drug targets. A mechanistic mathematical model of articular chondrocyte differentiation was implemented with a semi-quantitative formalism. It is composed of a protein RN and a gene RN(GRN) and developed by combining two strategies. First, we established a mechanistic network based on accumulation of decades of biological knowledge. Second, we combined that mechanistic network with