Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 33 - 33
1 Sep 2012
Griffin M Iqbal S Sebastian A Colthurst J Bayat A
Full Access

Introduction. Nonunions pose complications in fracture management that can be treated using electrical stimulation (ES). Bone marrow mesenchymal stem cells (BMMSCs) are essential in fracture healing, although the effects of different clinical ES waveforms available in clinical practice on BMMSCs cellular activities is unknown. Materials and Methods. We compared Direct Current (DC), Capacitive Coupling (CC), Pulsed Electromagnetic wave (PEMF) and Degenerate Wave (DW) by stimulating human-BMMSCs for 5 days for 3 hours a day. Cytotoxicity, cell proliferation, cell-kinetics and cell apoptosis were evaluated after ES. Migration and invasion were assessed using fluorescence microscopy and affected gene and protein expression were quantified. Results. DW had the greatest proliferative and least apoptotic and cytotoxic effects compared to other waveforms and unstimulated cells after 5 days of ES (p < 0.001). DC, DW and CC resulted in significantly more cells in S phase and G2/M phase (p < 0.01) compared to the unstimulated BMMSCs. CC and DW caused more cells to invade collagen and showed increased MMP-2 and MT1-MMP expression (p < 0.001) compared to the other waveforms and unstimulated BMMSCs. DC increased cellular migration in a scratch-wound assay and all ES waveforms increased migration gene expression with DC having the greatest effect (p < 0.01). Conclusion. The ES waveform is vital in influencing BMMSCs cellular activities. Migration and invasion were increased by ES which suggests that the recruitment of BMMSCs to the healing site during a fracture could be increased by ES