Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co. 2+. and Co-NPs on liver cells, and explain further the potential mechanisms. Methods. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study.
Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed. Results. Using LA or GC, especially triamcinolone acetonide, a dilution of 1:100 resulted in only a moderate reduction of viability, while a dilution of 1:10 showed significantly fewer cell counts. TA and CA reduced viability significantly at a dilution of 1:2. Higher dilutions did not affect viability. Notably, HA showed no effects of cytotoxicity in all drug dilutions. Conclusion. The toxicity of common intra-articular injectable drugs, assessed by cell viability, is mainly dependent on the dilution of the drug being tested. LA are particularly toxic, whereas HA did not affect cell viability. Cite this article: P. Busse, C. Vater, M. Stiehler, J. Nowotny, P. Kasten, H. Bretschneider, S. B. Goodman, M. Gelinsky, S. Zwingenberger.
Although the response of macrophages to polyethylene debris has been widely studied, it has never been compared with the cellular response to ceramic debris. Our aim was to investigate the cytotoxicity of ceramic particles (Al. 2. O. 3. and ZrO. 2. ) and to analyse their ability to stimulate the release of inflammatory mediators compared with that of high-density polyethylene particles (HDP). We analysed the effects of particle size, concentration and composition using an in vitro model. The J774 mouse macrophage cell line was exposed to commercial particles in the phagocytosable range (up to 4.5 μm). Al. 2. O. 3. was compared with ZrO. 2. at 0.6 μm and with HDP at 4.5 μm.
Local treatment with phenol is often used after intralesional excision of chondroblastomas and giant-cell tumours which involve bone near joints, and has been shown to reduce the rate of recurrence. The ideal concentration of phenol is uncertain, but may be important because of the high rate of absorption and toxicity. We have studied the effectiveness of different concentrations on standard sarcoma cell lines. Our results suggest that a 5% solution of phenol is effective against dispersed single cells, and that higher concentrations give no significant advantage, but create problems due to lack of homogeneous mixing, temperature and safety.
Metal and their alloys have been widely used as implantable materials and prostheses in orthopaedic surgery. However, concerns exist as the metal nanoparticles released from wear of the prostheses cause clinical complications and in some cases result in catastrophic host tissue responses. The mechanism of nanotoxicity and cellular responses to wear metal nanoparticles are largely unknown. The aim of this study was to characterise macrophage phagocytosed cobalt/chromium metal nanoparticles both in vitro and in vivo, and investigate the consequent cytotoxicity. Two types of macrophage cell lines, murine RAW246.7 and human THP-1s were used for in vitro study, and tissues retrieved from pseudotumour patients caused by metal-on-metal hip resurfacing (MoMHR) were used for ex vivo observation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) in combination with backscatter, energy-disperse X-ray spectrometer (EDS), focused ion beam (FIB) were employed to characterise phagocytosed metal nanoparticles. Alamar blue assay, cell viability assays in addition to confocal microscopy in combination with imaging analysis were employed to study the cytotoxiticy in vitro. The results showed that macrophages phagocytosed cobalt and chromium nanoparticles in vitro and the phagocytosed metal particles were confirmed by backscatter SEM+EDS and FIB+EDS. these particles were toxic to macrophages at a dose dependent manner. The analysis of retrieved tissue from revision of MoMHR showed that cobalt/chromium metal nanoparticles were observed exclusively in living macrophages and fragments of dead macrophages, but they were not seen within either live or dead fibroblasts. Dead fibroblasts were associated with dead and disintegrated macrophages and were not directly in contact with metal particles; chromium but not cobalt was the predominant component remaining in tissue. We conclude that as an important type of innate immune cells and phagocytes, macrophages play a key role in metal nanoparticles related cytotoxicity. Metal nanoparticles are taken up mainly by macrophages. They corrode in an acidic environment of the phagosomes. Cobalt that is more soluble than chromium may release inside macrophages to cause death of individual nanoparticle-overloaded macrophages. It is then released into the local environment and results in death of fibroblasts and is subsequently leached from the tissue.
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/
Introduction and Objective. Regeneration of cartilage injuries is greatly limited. Therefore, cartilage injuries are often the starting point for later osteoarthritis. In the past, various bioactive glass (BG) scaffolds have been developed to promote bone healing. Due to the fact that they induce the deposition of hydroxyapatite (HA) -the main component of bone matrix, these BG types are not suitable for chondrogenesis. Hence, a novel BG (Car12N) lacking HA formation, was established. Since BG are generally brittle the combination with polymers is helpful to achieve suitable biomechanic stability. The aim of this interdisciplinary project was to investigate the effects of biodegradable polymer Poly(D,L-lactide-co-glycolide) (PLLA) infiltration into a Car12N scaffold for cartilage tissue engineering. Materials and Methods. BG scaffolds were infiltrated with PLLA using phase separation within a solvent. Pure BG Car12N scaffolds served as control. To assess whether the polymer was homogeneously distributed the polymer to glass ratio and pore contents in the upper, middle and lower third of the scaffolds were examined by light microscopy. For a more precise characterization of the scaffold topology, the glass strut length, the glass strut diameter and the pore circumference were also measured. Leaching tests in 0.1M HCl solution over 8 days were used to allow a gel layer formation on the scaffolds surface. Non-leached and leached scaffolds were subjected to strength testing.
Introduction and Objective. Guided Bone Regeneration (GBR) uses biodegradable collagen membranes of animal origin tissues (dermis and pericardium). Their barrier effect prevents soft tissues to interfere with the regeneration of alveolar bone. However, their xenogeneic origin involves heavy chemical treatments which impact their bioactivity. Wharton's Jelly (WJ) from the umbilical cord is a recoverable surgery waste. WJ is mostly made from collagen fibers, proteoglycans, hyaluronic acid, and growth factors. WJ with immunologically privileged status and bioactive properties lends credence to its use as an allograft. Nevertheless, low mechanical properties limit its use in bone regenerative strategies. Herein, our objective is to develop a crosslinked WJ-based membrane to improve its strength and thus its potential use as a GBR membrane. Materials and Methods. The umbilical cords are collected after delivery and then stored at −20°C until use. The WJ membranes (1 × 5 × 12 mm) were obtained after the removal of blood vessels and amniotic tissue, washed, lyophilized, and stored at −20°C. WJ membranes were incubated in genipin solutions in decreasing concentrations (0.3 g / 100 mL − 0.03 g / 100 mL) for 24 hours at 37°C. The crosslinking degree was estimated by ninhydrin and confirmed by FTIR (Fourier-transform infrared spectroscopy) assays. The swelling rate was obtained after the rehydration of dry crosslinked WJ-membrane for 10 min in D-PBS. The mechanical properties were assessed in hydrated conditions on a tensile bench. The resistance to the degradation was evaluated by collagenase digestion (1 mg/mL for 60 hours) assay. The cytotoxicity of crosslinked WJ-membrane was evaluated in accordance with the standard ISO.10993-5 (i.e. Mitochondrial activity and Lactate Dehydrogenase release) against Mesenchymal Stem Cells (MSCs). Finally, the MSCs colonization and proliferation were followed after 21 days of culture on crosslinked WJ-membranes. Results. The increase of crosslinking rates from 30% to 90% of the WJ membrane was demonstrated by the ninhydrin assay. FTIR analysis showed a prominent peak at 1732 cm. -1. , confirming the incorporation of genipin in the WJ. The swelling rate of crosslinked WJ-membrane decreased with an increase of the crosslinking rate. An increase in elastic modulus and an increase in the resistance to the collagenase degradation were observed along with an increase in the crosslinking degree.
Direct metal printed (DMP) porous iron implants possess promising mechanical and corrosion properties for various clinical application. Nevertheless, there is a requirement for better co-relation between in vitro and in vivo corrosion and biocompatibility behaviour of such biomaterials. Our present study evaluates absorption of porous iron implants under both static and dynamic conditions. Furthermore, this study characterizes their cytocompatibility using fibroblastic, osteogenic, endothelial and macrophagic cell types. In vitro degradation was performed statically and dynamically in a custom-built set-up placed under cell culture conditions (37 °C, 5% CO2 and 20% O2) for 28 days. The morphology and composition of the degradation products were analysed by scanning electron microscopy (SEM, JSM-IT100, JEOL). Iron implants before and after immersion were imaged by μCT (Quantum FX, Perkin Elmer, USA). Biocompatibility was also evaluated under static and dynamic in vitro culture conditions using L929, MG-63, HUVEC and RAW 264.7 cell lines. According to ISO 10993, cytocompatibility was evaluated directly using live/dead staining (Live and Dead Cell Assay kit, Abcam) in dual channel fluorescent optical imaging (FOI) and additionally quantified by flow cytometry. Furthermore, cytotoxicity was indirectly quantified using ISO conform extracts in proliferation assays. Strut size of DMP porous iron implants was 420 microns, with a porosity of 64% ± 0.2% as measured by micro-CT. After 28 days of physiological degradation in vitro, dynamically tested samples were covered with brownish degradation products. They revealed a 5.7- fold higher weight loss than statically tested samples, without significant changes in medium pH. Mechanical properties (E = 1600–1800 MPa) of these additively manufactured implants were still within the range of the values reported for trabecular bone, even after 28 days of biodegradation. Less than 25% cytotoxicity at 85% of the investigated time points was measured with L929 cells, while MG-63 and HUVEC cells showed 75% and 60% viability, respectively, after 24 h, with a decreasing trend with longer incubations.
Bioactive functional scaffolds are essential for support of cell-based strategies to improve bone regeneration. Adipose-tissue-derived-stromal-cells (ASC) are more accessible multipotent cells with faster proliferation than bone-marrow-derived-stromal-cells (BMSC) having potential to replace BMSC for therapeutic stimulation of bone-defect healing. Their osteogenic potential is, however lower compared to BMSC, a deficit that may be overcome in growth factor-rich orthotopic bone defects with enhanced bone-conductive scaffolds. Objective of this study was to compare the therapeutic potency of human ASC and BMSC for bone regeneration on a novel nanoparticulate β-TCP/collagen-carrier (β-TNC).
The ideal bone substituting biomaterials should possess bone-mimicking mechanical properties; have of porous interconnected structure, and adequate biodegradation behaviour to enable full recovery of bony defects. Direct metal printed porous scaffolds hold potential to satisfy all these requirements and were additively manufactured (AM) from atomized WE43 magnesium alloy powder with grain sizes between 20 and 60 μm. Their micro-structure, mechanical properties, degradation behavior and biocompatibility was then evaluated in vitro. Firstly, post-processing values nicely followed design parameters. Next, Young's moduli were similar to that of trabecular bone (i.e., E = 700–800 MPa) even after 28 days of simulated in vivo-like corrosion by in vitro immersion. Also, a relatively moderate hydrogen evolution, corresponding to a calculated 19.2% of scaffold mass loss, was in good agreement with 20.7% volume reduction as derived from reconstructed μCT images. Finally, only moderate cytotoxicity (i.e., level 0, <25%), even after extensive ISO 10993-conform testing for 72 h using MG-63 cells, was determined using WE43 extracts (2 way ANOVA, post-hoc Tukey's multiple comparisons test; α = 0.05).
To date there has been no material for endoprosthetics providing excellent resistance to abrasion and corrosion combined with great tensile strength, fracture toughness, and bending strength, as well as adequate biocompatibility. Carbon-fiber-reinforced silicon carbide (C/SiC, C/C-SiC or C/SiSiC) is as a ceramic compound a potentially novel biomaterial offering higher ductility and durability than comparable oxide ceramics. Aim of this investigation was to test the suitability of C/SiC ceramics as a new material for bearing couples in endoprosthetics. One essential quality that any new material must possess is biocompatibility. For this project the in-vitro biocompatibility was investigated by using cuboid like scaffolds made of CMC. To determine whether the material is suited as a lubricant partner in endoprosthetics, we measured its abrasion coefficient and wear tolerance against various antibodies. The C/SiC samples tested were produced via the Liquid Silicon Infiltration (LSI) of pyrolized porous fiber preforms made by warm-flow pressing free-flowing granulates on a hydraulic downstroking press with a heated die of the type HPS-S, 1000 kN. After preparation of the composites, the tribological characteristics are determined. Flexural strength was determined at room temperature according to DIN685-3 with an universal testing machine Z100 and the Young”s -modulus was carried out via resonant frequency-damping analysis RFDA. The samples”surface as well as cell adhesion and cell morphology were assessed via ESEM. The human osteoblast-like cell line MG-63 and human ostoeblast were used for cel culture ecperiments (WST, Live/dead,
MiRNAs perform gene regulation that can target approximately 60% of human protein coding genes. Along with many cellular processes, miRNAs have been implicated in stem cell differentiation. Osterix (Osx), which is inhibited by mir-31, is required by MSCs for early osteoblast differentiation resulting in bone formation further downstream. We used antagomir functionalised gold nanoparticles (AuNPs) to block mir-31, which resulted in upregulation of Osx in pre-osteoblastic MG63 cells and human mesenchymal stem cells (MSCs). We used MG63 pre-osteoblastic cell line and human MSCs.
The mechanism of adverse tissue reaction to implant derived cobalt and chromium is unknown. It is possible that only one of these metals, cobalt, plays critical role in the failure of MOM implant. Cobalt ions are known to stabilize hypoxia inducible factor (HIF) 1α, which is involved in inflammatory pathway involving upregulation of BNIP3, GLUT1, HO-1 and COX-2 genes. This study used human monocytic cell line U937 to test the cytotoxic and inflammatory response to cobalt and chromium in form of ions and nanoparticles (NP) at clinically relevant doses. MTT assay was used to assess cytotoxic potential of metals for up to 24 hours. Gene expression was studied using qPCR and protein expression using Western Blot technique. Inflammatory cytokine release was studied using ELISA assay.
Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.Objectives
Methods
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured. Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.
Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death. Macroscopically normal human cartilage was exposed to air for 0, 30, 60 or 120 minutes. Selected samples were wetted in lactated Ringer’s solution for ten seconds every ten or 20 minutes. The viability of chondrocytes was measured after three days by Live/Dead staining. Chondrocyte death correlated with the length of exposure to air and the depth of the cartilage. Drying for 120 minutes caused extensive cell death mainly in the superficial 500 μm of cartilage. Rewetting every ten or 20 minutes significantly decreased cell death. The superficial zone is most susceptible to desiccation. Loss of superficial chondrocytes likely decreases the production of essential lubricating glycoproteins and contributes to subsequent degeneration. Frequent wetting of cartilage during arthrotomy is therefore essential.