Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 27 - 27
1 Mar 2021
van Duren B Lamb J Al-Ashqar M Pandit H Brew C
Full Access

The angle of acetabular inclination is an important measurement in total hip replacement (THR) procedures. Determining the acetabular component orientation intra-operatively remains a challenge. An increasing number of innovators have described techniques and devices to achieve it. This paper describes a mechanical inclinometer design to measure intra-operative acetabular cup inclination. Then, the mechanical device is tested to determine its accuracy. The aim was to design an inclinometer to measure inclination without existing instrumentation modification. The device was designed to meet the following criteria: 1. measure inclination with acceptable accuracy (+/− 5o); 2. easy to use intra-operatively (handling & visualization); 3. adaptable and useable with majority of instrumentation kits without modification; 4. sterilizable by all methods; 5. robust/reusable. The prototype device was drafted by computer aided design (CAD) software. Then a prototype was constructed using a 3D printer to establish the final format. The final device was CNC machined from SAE 304 stainless steel. The design uses an eccentrically weighted flywheel mounted on two W16002-2RS ball bearings pressed into symmetrical housing components. The weighted wheel is engraved with calibrated markings relative to its mass centre. Device functioning is dependent on gravity maintaining the weighted wheel in a fixed orientation while the housing can adapt to the calibration allowing for determining the corresponding measurement. The prototype device accuracy was compared to a digital device. A digital protractor was used to create an angle. The mechanical inclinometer (user blinded to digital reading) was used to determine the angle and compared to the digital reading. The accuracy of the device compared to the standard freehand technique was assessed using a saw bone pelvis fixed in a lateral decubitus position. 18 surgeons (6 expert, 6 intermediate, 6 novice) were asked to place an uncemented acetabular cup in a saw bone pelvis to a target of 40 degrees. First freehand then using the inclinometer. The inclination was determined using a custom-built inertial measurement unit with the user blinded to the result. Comparison between the mechanical and digital devices showed that the mechanical device had an average error of −0.2, a standard deviation of 1.5, and range −3.3 to 2.6. The average root mean square error was 1.1 with a standard deviation of 0.9. Comparison of the inclinometer to the freehand technique showed that with the freehand component placement 50% of the surgeons were outside the acceptable range of 35–45 degrees. The use of the inclinometer resulted all participants to achieve placement within the acceptable range. It was noted that expert surgeons were more accurate at achieving the target inclination when compared to less experienced surgeons. This work demonstrates that the design and initial testing of a mechanical inclinometer is suitable for use in determining the acetabular cup inclination in THR. Experimental testing showed that the device is accurate to within acceptable limits and reliably improved the accuracy of uncemented cup implantation in all surgeons


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 20 - 20
1 Jun 2012
Holloway N Drury C Ritchie I
Full Access

Metal-on-metal (MOM) hip arthroplasty, including resurfacing, has become the subject of recent research and debate. There is the perceived benefit of improved wear rates of bearing surfaces leading to superior durability and performance of these types of implant. An associated feature of MOM bearing surfaces is the generation of metal ions. These can have local and systemic cytotoxic effects. An immunoloigical response has been suggested, however, metal wear debris may cause direct damage to cellular DNA. Studies have shown that release of these ions is related to bearing diameter and component alignment. However, little is known about the relationship between metal ion levels and implant survivorship. The MHRA has published guidelines on the follow-up of patients with MOM implants including measurement of serum ion levels and cross sectional imaging. Between February 2001 and November 2009, 135 patients (164 hips) had MOM resurfacing arthroplasty at our institution. We report a retrospective analysis of the data generated by review of these patients. Of the 135 patients, 91 were identified for clinical review. Each patient had serum metal ion levels measured, plain AP radiographs of the pelvis examined and, in the presence of raised metal ions, a Metal Artefact Reduction Sequence (MARS) MRI performed. 27 patients (35 hips) had raised metal ion levels (Cobalt and Chromium). Patients with raised metal ion levels had a mean acetabular cup inclination of 52.7 degrees compared with a mean inclination of 48.6 degrees in patients with normal ion levels (p<0.05). MARS MRI in the raised ion group revealed 9 patients with appearances suggestive of ALVAL. A number of these patients had hip revision surgery with the remainder awaiting potential revision. These findings reflect current evidence suggesting a relationship between sub-optimal component position and raised metal ion levels and an increased rate of ALVAL


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction

In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer.

Methods

In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOItarget). The intra-operative inclination of the cup (IOIcup) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OImath) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 49 - 49
1 Apr 2017
Lancaster-Jones O Al-Hajjar M Thompson J Isaac G Fisher J
Full Access

Background. Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates. Method. The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup inclination angles were investigated; an equivalent to 45 and 65 degrees in-vivo, thus six conditions (n=6 for each condition) were studied in total with three million cycles completed for each condition. The wear of the ceramic-on-ceramic bearings were determined using a microbalance (Mettler Toledo, XP205, UK) and the dynamic microseparation displacement was measured using a Liner Variable Differential Transformer. Results. When a translational joint centre mismatch was coupled with a higher cup inclination angle, the severity of edge-loading increased when compared with the effect of those variables applied individually. Increasing the medial-lateral joint centre mismatch from 2 to 3 to 4mm resulted in increased wear rates under both cup inclination angles, with the 65 degree cup inclination angle having significantly higher wear rate than the cup inclination angle of 45 degree (p=0.02, p=0.02, and p<0.01 respectively). Conclusion. The cups with a 45 degree inclination angle showed greater resistance to dynamic microseparation as a result of joint centre mismatch. This study demonstrated that optimal position should not only consider the rotational position of the acetabular cup but also the relative centres of rotation of the head and the cup. Disclosure. John Fisher is a paid consultant to DePuy Synthes. Jonathan Thompson and Graham H. Issac are employees at DePuy Synthes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 25 - 25
1 Aug 2012
AL-Hajjar M Fisher J Williams S Tipper J Jennings L
Full Access

In vitro the introduction of microseparation and edge loading to hip simulator gait cycle has replicated clinically relevant wear rates and wear mechanisms in ceramic-on-ceramic bearings. [1]. , and elevated the wear rates of MoM surface replacements (SR) to levels similar to those observed in retrievals. [2]. The aim was to assess the wear of two different sized MoM total hip replacement bearings under steep cup inclination angles and adverse microseparation and edge loading conditions. Two tests were performed on the Leeds II hip joint simulator using two different size bearings (28mm and 36mm). Cups were mounted to provide inclination angles of 45 degrees (n=3) and 65 degrees (n=3). The first three million cycles were under standard gait conditions. Microseparation and edge loading conditions as described by Nevelos et al. [1]. were introduced to the gait cycle for the subsequent three million cycles. The lubricant was 25% new born calf serum. The mean wear rates and 95% confidence limits were determined and statistical analysis was performed using One Way ANOVA. Under standard gait conditions, when the cup inclination angle increased from 45 degrees to 65 degrees, the wear of size 28mm bearing significantly (p=0.004) increased by 2.7-fold, however, the larger bearings did not show any increase in wear (p=0.9). The introduction of microseparation conditions resulted in a significant (p=0.0001) increase in wear rates for both bearing sizes under both cup inclination angle conditions. Under microseparation conditions, the increase in cup inclination angle had no influence on the wear rate for both bearing sizes (Figure 1). With larger bearings, head-rim contact occurs at a steeper cup inclination angle providing an advantage over smaller bearings. The introduction of edge loading and microseparation conditions resulted in a significant increase in wear rates for both bearing sizes. The wear rates obtained in this study under combined increased cup inclination angle and microseparation were half of those obtained when SR MoM bearings were tested under similar adverse conditions. [2]. This study shows the importance of prosthesis design and accurate surgical positioning of the head and acetabular cup in MoM THRs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 41 - 41
1 Oct 2016
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Edge loading due to dynamic separation can occur due to variations in component positioning such as a steep cup inclination angle (rotational) or mismatch between the centres of rotation of the head and the cup (translational). The aim of this study was to determine the effect of variations in rotational and translational positioning of the cup on the magnitude of dynamic separation, wear and deformation of metal-on-polyethylene bearings. Eighteen 36mm diameter metal-on-polyethylene hip replacements were tested on an electromechanical hip simulator. Standard gait with concentric head and cup centres were applied for cups inclined at 45° (n=3) and 65° (n=3) for two million cycles. A further two tests with translational mismatch of 4mm applied between the head and cup bearing centres for cups inclined at 45° (n=6) and 65° (n=6) were run for three million cycles. Wear was determined using a microbalance and deformation by geometric analysis. Confidence intervals of 95% were calculated for mean values, and t-tests and ANOVA were used for statistical analysis (p<0.05). Under 4mm mismatch conditions, a steeper cup inclination angle of 65° resulted in larger dynamic separation (2.1±0.5mm) compared with cups inclined at 45° (0.9±0.2mm). This resulted in larger penetration at the rim under 65° (0.28±0.04mm) compared to 45° (0.10±0.09mm) cup inclination conditions (p<0.01). Wear rates under standard concentric conditions were 12.8±3.8 mm. 3. /million cycles and 15.4±5.0 mm. 3. /million cycles for cups inclined at 45° and 65° respectively. Higher wear rates were observed under 4mm of translational mismatch compared with standard concentric conditions at 45° (21.5±5.5 mm. 3. /million cycles, p<0.01) and 65° (23.0±5.7 mm. 3. /million cycles, p<0.01) cup inclination. Edge loading under dynamic separation conditions due to translational mismatch resulted in increased wear and deformation of the polyethylene liner. Minimising the occurrence and severity of edge loading through optimal component positioning may reduce the clinical failure rates of polyethylene


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 27 - 27
1 Oct 2016
Ali M Al-Hajjar M Jennings L Fisher J
Full Access

Edge loading due to dynamic separation can occur due to variations in component positioning such as a steep cup inclination angle (rotational) or mismatch between the centres of rotation of the head and the cup (translational). The aim of this study was to determine the effect of variations in rotational and translational positioning of the cup on the magnitude of dynamic separation, wear and deformation of metal-on-polyethylene bearings. Eighteen 36mm diameter metal-on-polyethylene hip replacements were tested on an electromechanical hip simulator. Standard gait with concentric head and cup centres were applied for cups inclined at 45° (n=3) and 65° (n=3) for two million cycles. A further two tests with translational mismatch of 4mm applied between the head and cup bearing centres for cups inclined at 45° (n=6) and 65° (n=6) were run for three million cycles. Wear was determined using a microbalance and deformation by geometric analysis. Confidence intervals of 95% were calculated for mean values, and t-tests and ANOVA were used for statistical analysis (p<0.05). Under 4mm mismatch conditions, a steeper cup inclination angle of 65° resulted in larger dynamic separation (2.1±0.5mm) compared with cups inclined at 45° (0.9±0.2mm). This resulted in larger penetration at the rim under 65° (0.28±0.04mm) compared to 45° (0.10±0.05mm) cup inclination conditions (p<0.01). Wear rates under standard concentric conditions were 12.8±3.8 mm. 3. /million cycles and 15.4±5.0 mm. 3. /million cycles for cups inclined at 45° and 65° respectively. Higher wear rates were observed under 4mm of translational mismatch compared with standard concentric conditions at 45° (21.5±5.5 mm. 3. /million cycles, p<0.01) and 65° (23.0±5.7 mm. 3. /million cycles, p<0.01) cup inclination. Edge loading under dynamic separation conditions due to translational mismatch resulted in increased wear and deformation of the polyethylene liner. Minimising the occurrence and severity of edge loading through optimal component positioning may reduce the clinical failure rates of polyethylene


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 65 - 65
1 May 2012
Hart A Lloyd G Sabah S Sampson B Underwood R Cann P Henckel J Cobb PJ Lewis A Porter M Muirhead-Allwood S Skinner J
Full Access

SUMMARY. We report a prospective study of clinical data collected pre, intra and post operation to remove both cup and head components of 118 failed, current generation metal on metal (MOM) hips. Whilst component position was important, the majority were unexplained failures and of these the majority (63%) had cup inclination angles of less than 55 degrees. Poor biocompatibility of the wear debris may explain many of the failures. BACKGROUND. Morlock et al reported a retrospective analysis of 267 MOM hips but only 34 head and cup couples (ie most were femoral neck fractures) and without data necessary to define cause of failure. The commonest cause of failure in the National Joint Registry (NJR) is unexplained. METHODS. We categorised the cause of failure, as defined by the NJR, of all MOM hips received over an 18 month period that had a full set of pre, intra and post op data. A group of 40 patients with unilateral well functioning MOM hips was used for comparison. RESULTS. In the retrieval group, the median age was 61 years (25 to 87) and there were 80 females and 38 males. The median time between primary and revision operation was 35 months (4 to 121). Femoral head size was <50mm in 89 and >=50mm in 29. The causes of failure were: unexplained in 75; aseptic loosening (acetabular) in 12; aseptic loosening (femoral) in 7; dislocation/subluxation in 1; infection in 11; periprosthetic femoral fracture in 2; malalignment in 6; size mismatch in 3; other in 1. 47 (63%) of unexplained failures had cup inclination angles of less than 55 degrees. The unexplained failures had increased blood metal ions (p <0.0001) and cup inclination angle (p <0.005) but a decreased femoral head size (p <0.0001) when compared to well functioning MOM hip patients. CONCLUSION. The commonest cause of failed MOM hips was unexplained. Comparison to well functioning hips revealed that the mechanism may involve high blood metal ions but high cup inclination angle was not found in the majority of cases. Further biological and mechanical investigation into the underlying mechanism of failure is required


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 120 - 120
1 Aug 2012
Holleyman R Gikas P Tyler P Coward P Carrington R Skinner J Briggs T Miles J
Full Access

Background. The position of the hip-joint centre of rotation (HJC) within the pelvis is known to influence functional outcome of total hip replacement (THR). Superior, lateral and posterior relocations of the HJC from anatomical position have been shown to be associated with greater joint reaction forces and a higher incidence of aseptic loosening. In biomechanical models, the maximum force, moment-generating capacity and the range of motion of the major hip muscle groups have been shown to be sensitive to HJC displacement. This clinical study investigated the effect of HJC displacement and acetabular cup inclination angle on functional performance in patients undergoing primary THR. Methods. Retrospective study of primary THR patients at the RNOH. HJC displacement from anatomical position in horizontal and vertical planes was measured relative to radiological landmarks using post-operative, calibrated, anterior-posterior pelvic radiographs. Acetabular cup inclination angle was measured relative to the inter-teardrop line. Maximum range of passive hip flexion, abduction, adduction, external and internal rotation were measured in clinic. Patient reported functional outcome was assessed by Oxford Hip Score (OHS) and WOMAC questionnaires. Data analysed using a linear regression model. Results. 109 THRs were studied in 104 patients (69 Female). Mean age at THR=63 years (22-88). Mean follow-up=17 months (11-39 months). Median OHS=16, WOMAC=8. Increasing vertical HJC displacement (in either superior or inferior direction) from anatomical position was associated with worsening OHS (p<0.05) and WOMAC scores (p<0.05) and a reduced range of passive hip flexion (p<0.05). No relationship was found between either horizontal HJC displacement or acetabular cup inclination angle and patient functional outcome. Conclusion. A significant relationship was identified between increasing vertical displacement of the HJC and worsening patient functional outcome. This supports current opinion regarding the disadvantageous consequences of a superiorly displaced HJC in terms of survivorship and function. We therefore advocate an anatomical restoration of HJC position wherever possible


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 123 - 123
1 Mar 2021
Jelsma J Schotanus M van Kuijk S Buil I Heyligers I Grimm B
Full Access

Hip resurfacing arthroplasty (HRA) became a popular procedure in the early 90s because of the improved wear characteristic, preserving nature of the procedure and the optimal stability and range of motion. Concerns raised since 2004 when metal ions were seen in blood and urine of patients with a MoM implant. Design of the prosthesis, acetabular component malpositioning, contact-patch-to-rim distance (CPR) and a reduced joint size all seem to play a role in elevated metal ion concentrations. Little is known about the influence of physical activity (PA) on metal ion concentrations. Implant wear is thought to be a function of use and thus of patient activity levels. Wear of polyethylene acetabular bearings was positively correlated with patient's activity in previous studies. It is hypothesized that daily habitual physical activity of patients with a unilateral resurfacing prosthesis, measured by an activity monitor, is associated with habitual physical activity. A prospective, explorative study was conducted. Only patients with a unilateral hip resurfacing prosthesis and a follow-up of 10 ± 1 years were included. Metal ion concentrations were determined using ICP-MS. Habitual physical activity of subjects was measured in daily living using an acceleration-based activity monitor. Outcome consisted of quantitative and qualitative activity parameters. In total, 16 patients were included. 12 males (75%) and 4 females (25%) with a median age at surgery of 55.5 ± 9.7 years [43.0 – 67.9] and median follow-up of 9.9 ± 1.0 years [9.1 – 10.9]. The median cobalt and chromium ion concentrations were 25 ± 13 and 38 ± 28 nmol/L. A significant relationship, when adjusting for age at surgery, BMI, cup size and cup inclination, between sit-stand transfers (p = .034) and high intensity peaks (p = .001) with cobalt ion concentrations were found (linear regression analysis). This study showed that a high number of sit-stand transfers and a high number of high intensity peaks is significantly correlated with high metal ion concentrations, but results should be interpreted with care. For patients it seems save to engage in activities with low intensity peaks like walking or cycling without triggering critical wear or metal ions being able to achieve important general health benefits and quality of life, although the quality (high intensity peaks) of physical activity and behaviour of patients (sit-stand-transfers) seem to influence metal ion concentrations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 93 - 93
1 Aug 2012
Clarke S Phillips A
Full Access

Metal on metal press-fit acetabular cups are the worst performing acetabular cup type with severe failure consequences compared to cups made from more inert materials such as polyethylene or ceramic. The cause of failure of these cup types is widely acknowledged to be multi-factorial, therefore creating a complex scenario for analysis through clinical studies. A factorial analysis has been carried out using an experimentally validated finite element analysis to investigate the relative influence of four input factors associated with acetabular cup implantation on output parameters indicating potential failure of the implantation. These input factors were: cup material stiffness; cup inclination; cup version; cup seating; and level of press-fit. The output parameter failure indicators were: wear; tensile strains in the underlying bone; bone remodelling; and cup-bone micromotions. The factorial analysis concluded that the most significant influence was that of cup inclination on wear, and the second most significant was the influence of the level of press-fit on bone remodelling at the acetabular rim. Significant influence was also observed between version angle and wear, and cup-seating and micro-motion. The results demonstrated the clear multi-factorial nature of implant failure and highlighted the importance of correct implant positioning and fit


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 50 - 50
1 May 2012
Underwood RJ Cann PM Skinner J Hart A
Full Access

SUMMARY. The relationship between component position, wear rate and edge loading was investigated for 115 explanted current generation Metal-on-Metal (MoM) hips. Edge wear was detected in: 63% of all hips; and 48% of those with cups positioned within Lewinnek's box. BACKGROUND. The link between steeply inclined cups (>55 degrees) and edge loading is known for all common hip bearing couples. Edge loading is associated with high rates of wear, and has been linked to premature failure of hips. METHODS. The wear of failed hip joints was measured using a Taylor Hobson Talyrond 365. Edge loading was identified when the depth of the wear scar was maximum at the rim of the cup. The position of the cups was measured from plain radiographs or 3D CT. RESULTS. A total of 115 retrieved hips were available with position and wear analysis. The median age of patients was 58 years (25 – 87) and the median time before revision was 38 months (4 – 121). All hips were measured for inclination and 78 were measured for version. The median (range) of cup inclination was 51 degrees (15 – 82), and cup version was 18.5 degrees (-47 – 61). 63% of cups were found to be edge loaded. The median wear rate of the edge loaded cups was 12 μm per year compared to 1.88 μm per year for non-edge loaded cups. Edge loading was found in all components with an inclination steeper than 60°. Edge loading was found at inclination angles as low as 30°. 23 cups were placed within Lewinnek's safe zone: inclination of 40 ± 10degrees, and version of 15 ± 10 degrees. However, 11 of these “well positioned” components were edge loaded. Of the edge loaded components in Lewinnek's box, none had an inclination less than 40 degrees. CONCLUSIONS. Edge loading occurred at cup inclination angles lower than previously reported. It is believed that edge wear is related to the contact patch between head and cup, overlapping the edge of the cup, causing disruption to the lubrication regime and increased contact pressures at the edge of the cup. Work is progressing to calculate the size of contact patch for the explanted hips and position in the cup


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 55 - 55
1 May 2012
Mellon SJ Kwon Y Simpson DJ Murray DW Gill HS
Full Access

Introduction. Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood metal ion levels. The level of metal ions in blood is thought to be the result of MoM wear. In the present study the contribution of acetabulum orientation to stress distribution was investigated. Methods. Four subjects with MoM resurfacings and with known blood metal ion levels underwent motion analysis followed by CT scans. The positions of the acetabular (cup) and femoral components were determined the CT data relative to local coordinate systems in the pelvis (PCS) and the femur (FCS). Transformations, calculated from the motion analysis data, between the PCS and FCS gave the position of the cup relative to the femoral component for each frame of captured motion data. Hip reaction forces were taken from published data1. The intersection of hip reaction force with each subject's cup and the increase in inclination required to move the force to the edge of the cup was calculated for 2% intervals during the stance phase of gait. Finite element models representing each subject's cup and femoral components were created and contact stresses were determined for the native cup inclination angle. For each model, the effect of increasing the inclination of the cup, by up to 10°, in 1° increments, was determined. Results and Discussion. The two subjects with high metal ion levels had inclination angles of 60.2° and 53.7° whereas the two with low metal ion levels had inclination angles of 45.6° and 46.5°. The subjects with high metal ion levels required very little increase to their inclination angle to cause the hip reaction force vector to intersect at the edge. The contact stress on the cup increased dramatically when the inclination angle was such that the hip reaction force intersected with the edge. The average increase in contact stress under edge-loading conditions was 57% for the two subjects with high metal ions. In contrast, the subjects with low metal ions exhibited no change in contact stress when the inclination angle of their cups was increased by 10°. The inter-subject variability in the measured hip reaction forces was greater than the amount of increase in cup inclination required to induce edge-loading for the subjects with high metal ion levels. These results suggest that poor positioning of the cup during surgery may result in edge-loading, a greater rate of wear and adverse biological reactions associated with metal ion release


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 140 - 140
1 Jul 2014
Hjorth M Søballe K Jakobsen S Lorenzen N Mechlenburg I Stilling M
Full Access

Summary. Five year migration results of 49 large-head metal-metal (MoM) total hip arthroplasties show good implant stability and no association between implant migration and metal-ions levels, stem and cup position, or femoral bone mineral density. Introduction. The failure mechanism of metal-metal (MoM) total hip arthroplasty has been related to metal wear-debris and pseudotumor, but it is unknown whether implant fixation is affected by metal wear-debris. Patients and Methods. In July-August 2012 41 patients (10 women) at a mean age of 47 (23–63) years with a total of 49 MoM hip arthroplasties (ReCap Shell/M2a-Magnum head/Bi-Metric stem; Biomet Inc.) participated in a 5–7 year follow-up with blood tests (chrome and cobalt serum ions), questionnaires (Oxford Hip Score (OHS) and Harris Hip Score (HHS), measurement of cup and stem position and periprosthetic BMD. Further the patients had been followed with stereo-radiographs post-operative and at 1, 2 and 5 years for analysis of implant migration (Model-Based RSA 3.32). Results. 4 patients (6 hips) had elevated metal-ion levels (>7ug/l). The mean cup inclination was 45°(sd 6), the mean cup anteversion was 17°(sd7), and the mean stem anteversion was 19°(sd7). The difference between genders was statistically insignificant (p>0.09). At 5 years follow-up total translation (TT) for the stems (n=39 hips) was a mean 0.79mm (sd 0.53) and total rotation (TR) was a mean 1.99° (sd 1.53). Between 1–2 years there was no significant difference in mean TT (p=0.49)for the stems and between 2–5 years TT was mean 0.13 mm (sd 0.35) which was significant (p=0.03) but clinically very small and within the precision limits of the method. We found no significant migration along the 3 separate axes. There was no significant association between stem migration and metal ion levels >7ug/l (p=0.55), female gender (p=0.86), stem anteversion > 25° (p=0.29), T-scores < −1 (p=0.23), total OHS < 40 (p=0.19) or total HHS < 90 (p=0.68). Between 1–5 years there was no significant change in neither subsidence (p=0.14) nor in version (p=0.91) of the stems. At 5 years TT for the cups (n=36) was mean 1.21 mm (sd 0.74) and TR was mean 2.63° (sd 1.71). Between 1–2 years cup migration along the z-axis was mean 0.29 (sd 0.73) (p=0.03), which was also within precision limits of the method. There was a positive association between total OHS below 40 (n=4) and cup migration (p=0.04), but no association between cup migration and metal ion levels >7ug/l (p=0.80), female gender (p=0.74), cup inclination > 50° (p=0.93), cup anteversion > 25° (p=0.88) or HHS < 90 (p=0.93). Proximal cup migration at 5 years was mean 0.46 mm (sd 0.47), which was similar to the cup migration at 1 year (p=0.91) and 2 years (p=0.80) follow-up. No patients were revised before the final 5–7 year follow-up. Patient satisfaction was high (94%). Conclusion. All cups and stems were well-fixed between 1–5 years. We found no statistical significant correlation between implant migration and other factors that have been associated with failure of MoM hip arthroplasty such as elevated metal ion levels, component position, and female gender. Cup migration was higher in patients with a total OHS below 40. In conclusion, metal wear-debris does not seem to influence fixation of hip components in large-head MoM articulations at mid-term follow-up


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 11 - 11
1 Mar 2013
Matthies A Suarez A Karbach L Henckel J Skinner J Noble P Hart A
Full Access

There are several component position and design variables that increase the risk of edge loading and high wear in metal-on-metal hip resurfacing (MOM-HR). In this study we combined all of these variables to calculate the ‘contact patch to rim distance’ (CPRD) in patients undergoing revision of their MOM-HR. We then determined whether CPRD was more strongly correlated with component wear and blood metal ion levels, when compared to any other commonly reported clinical variable. This was a retrospective study of 168 consecutively collected MOM-HR retrieval cases. All relevant clinical data was documented, including pre-revision whole blood cobalt and chromium ion levels. Wear of the bearing surfaces was then measured using a roundness-measuring machine. We found four variables to be significantly (p < 0.05) correlated with component wear and blood metal ion levels: (1) cup inclination angle, (2) cup version angle, (3) arc of cover, and (4) CPRD. The correlations between CPRD and both wear and ion levels were significantly stronger than those seen with any other variable (all p < 0.0001). Our study has shown that CPRD is the best predictor of component wear and blood metal ion levels, and may therefore be a useful parameter to help determine those patients who are at risk of high wear and require more frequent clinical surveillance


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 46 - 46
1 Jul 2014
Moretti V Thormeyer J Chmell S
Full Access

Summary Statement. The circle theorem is a simple and effective measurement tool for estimating acetabular version after total hip arthroplasty. Introduction. Position of the acetabular cup is a major factor in the range of motion and risk of dislocation after total hip arthroplasty. However, there is no well established technique for accurately and easily estimating acetabular cup version intraoperatively or postoperatively. The objective of this study was to evaluate a recently proposed method for measuring acetabular cup version on a single plain radiograph of the hip, which is based on one of the circle theorems in basic geometry. Patients & Methods. Radiographic version is defined as the angle between the cup face plane and a plane perpendicular to the body coronal plane. Using this definition, a metal hemispheric cup was placed in a pelvic sawbone model at a series of known angles of radiographic version (based on direct goniometer measurement). Cup inclination, pelvic tilt, and pelvic rotation were held constant for all version angles. A single antero-posterior hip radiograph was then obtained and reviewed for each version angle. The acetabular cup version was next estimated by using a compass and protractor in accordance with the circle theorem. Statistical analysis was performed utilizing Student's t-test with an alpha=0.05. Results. 20 known angles of version were evaluated: 11 anteverted angles, 7 retroverted angles, and 2 neutral angles. Mean difference between the circle theorem estimate and the true version was 0.90 degrees (range −2 to 3). There was no statistically significant difference between the circle theorem's estimates and the true version (p=0.84). Similarly, there was no significant difference between the anteverted estimates (mean difference 0.91) and the retroverted estimates (mean difference 0.86)(p=0.95). Discussion/Conclusion. Methods of measuring component position are essential for evaluating surgical technique, monitoring cup stability, and maximizing patient outcomes. Radiographic version of an acetabular cup can be estimated by using the circle theorem. This theorem can provide a quick, easy, and accurate estimate of version with the use of simple instruments (compass and protractor) and readily available plain radiographs


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 44 - 44
1 Jun 2012
Smith J Hussain S Horey L Patil S Meek R
Full Access

Hip resurfacing has generally been used in younger patients with early osteoarthritis of the hip. There has been considerable recent interest in this over the past few years. We conducted a prospective randomised trial comparing 2 hip resurfacing implants, Durom and ASR looking at radiological and clinical outcomes. Forty-nine patients (78% male) with hip osteoarthritis which met the criteria for hip resurfacing were randomised to receive either a Durom or ASR resurfacing implant. These patients have so far been followed up for a minimum of one year. The groups were comparable in age (p=0.124) and gender (p=0.675). The average age in the ASR group was 54.04 years and in the Durom group it was 51.25. Radiological views were scrutinised immediately post op and at final follow up so far to look at cup inclination, stem-shaft angle, and acetabular osseointegration. Clinical outcomes were compared using the Oxford hip scores, WOMAC scores and SF12 scores. At minimum follow up of 1 year the mean post operative Oxford hip score was not significantly different between the Durom (45.32, SD 3.93) and ASR (43.44, SD 8.44). The mean post operative WOMAC score was also not significantly different between the Durom (52.56, SD 6.06) and ASR (49.63, SD 2.23). There was no difference between the groups with regards to signs of osseointegration from radiological assessment (p=0.368). There were 3 periprosthetic femoral neck fractures (5.7%) and one revision for pain. We conclude from this trial that there is no difference in the clinical or radiological findings between the Durom and ASR implants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 91 - 91
1 Aug 2012
Joyce T Lord J Langton D Nargol A
Full Access

Introduction. Total hip prostheses which use a ceramic head within a metal liner are a relatively recent introduction. As such, survivorship rates from independent centres alongside explant analysis are rare. The early experience with this novel ceramic-on-metal (CoM) bearing couple is reported. Methods and Materials. All CoM hips implanted between 2008 and 2009 at a single hospital by a single surgeon were reviewed. Radiographs were analysed using EBRA software to determine acetabular cup inclination and anteversion angles. Blood metal ion concentrations were measured using inductively coupled plasma mass spectroscopy (ICPMS). Explants were measured for bearing surface and taper wear using a high precision co-ordinate measuring machine. The roughness of the articulating surfaces was measured with a non-contact profilometer. Results. In 54 patients 56 CoM hips were implanted. Mean (range) age was 64 years (34-87). There were 41 females and 15 males. Patients were followed-up for a mean of 1.5 years. Three hips were revised at mean of 1.2 years (2 female, 1 male) with a further 3 listed for revision under 1.5 years giving an overall failure rate of 10.7%. All these patients reported with pain. X-rays of failed devices showed a characteristic pattern of femoral stem loosening. Serum cobalt and chromium were less than 2 micrograms/L. Explant analysis of the three revised hips showed wear at the liner rim in each case. In two of these cases the wear extended completely around the circumference. The wear volumes were 4.1, 2.0 and 2.3mm3 respectively. The ceramic heads were unworn but some transfer of metal could be seen visually. There was no significant wear or deformation at the taper junctions. Typical ceramic head roughness values were 3nm Ra and so most of the surface area of the heads remained in a pristine condition. Discussion. The very high early failure rate using COM is concerning. Explant analysis suggests equatorial contacts with propagation of high frictional forces distally. These forces may have caused early loosening of the femoral stems. Orthopaedic surgeons need to be aware of this new mechanism of failure which is associated with low metal ions


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 143 - 143
1 Jul 2014
Schroeder D Durham S Elliott M
Full Access

Summary Statement. A new 28mm-diameter ceramic-on-ceramic (COC) acetabular bearing couple (Biomet Orthopedics) showed extremely low wear, even under adverse microseparation conditions∗. The wear results are similar or more favorable than those reported for clinical retrievals and wear testing of similar ceramic bearings. Introduction. A new acetabular shell and ceramic insert design (Biomet) incorporates features to help prevent malalignment during implantation, while still providing secure fixation within the acetabular shell. The incorporation of Biolox. ®. Delta (zirconia toughened alumina, CeramTec) material should provide improved wear resistance over pure alumina ceramics. The goal of this study is to evaluate the wear durability of this system for standard and microseparation testing. Materials & Methods. The 28 mm diameter ceramic heads and inserts (CeramTec) were seated on taper spigots and within acetabular shells (Biomet), respectively. Six sets of parts were tested for 5M cycles of standard hip wear testing (ISO 14242) and an additional six sets of parts for 2M cycles of microseparation testing. The microseparation testing protocol included a steep cup angle (60° in-vivo), side load, and reduced axial load to induce head-liner separation. The lateral displacement was increased from 0.5mm, to 1mm, and then to 2mm in order to replicate wear features observed in extreme situations of clinical retrievals. [1]. The parts were weighed (gravimetric wear rates) and photographed throughout the test. SEM, transformation, and wear debris analyses were completed. Results. The steady-state wear rate throughout standard testing was 0.0094 +/− 0.0029 mm. 3. /10. 6. cycles (+/-95% CI). The initial 0.5mm microseparation distance (0–1M cycles) showed no signs of wear. Most heads showed wear stripes after increasing to 1.0mm (1–1.5M cycles), and then all test parts showed stripes after increasing to 2mm. The increased visibility in wear stripes correlated with an increased level of measured wear. For the 2mm separation-distance testing interval, the wear rate was 0.178 +/− 0.052mm. 3. /10. 6. cycles. Discussion/Conclusion. The lack of wear stripes during 0.5mm of microseparation is an indication of the strength of the implants. A distance of 1–2mm is an extreme level of microseparation and the 60° in-vivo cup inclination created an even worse-case situation for wear; however, the implants showed excellent mechanical strength and low wear rates. SEM and transformation analyses showed minimal wear and evidence of stress-induced ceramic toughening. Microseparation testing at another lab . [2]. has shown a similarly low wear rate (0.5 mm. 3. /10. 6. cycles) for Biolox. ®. Delta ceramic, with Biolox. ®. Forte (alumina ceramic, without zirconia) showing a considerably higher wear rate (6.3mm. 3. /10. 6. cycles). The standard testing wear rate (0.0094+/-0.0029 mm. 3. /10. 6. cycles) was much lower than the average wear rate (0.69+/-0.63 mm. 3. /10. 6. cycles) of several COC implant retrievals by Walter . [1]. The 28mm steady-state wear rate of this test is better than or equal to the wear rate (0.0101 mm. 3. /10. 6. cycles) observed in other 28mm COC systems.∗∗. ∗Ceramic-on-Ceramic articulation is not cleared for use in the United States. ∗∗Laboratory results are not necessarily indicative of clinical performance


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 149 - 149
1 Jul 2014
Slagis S Skrepnik N Wild J Robertson M Nielsen B Skrepnik T Eberle R
Full Access

Summary. Management of metal on metal hip replacements can be accomplished with a simple algorithm including easily available metal ion levels and hip MRI with metal artifact reducing software. After revision serum metal ion levels can be expected to fall rapidly. Introduction. Metallic ion release may be related to bearing surface wear and thus serves as an indicator of the in-vivo performance of metal on metal articulations. The purpose of this prospective, controlled study was to compare new large head metal on metal hip components with established modular metal on metal and metal on polyethylene and to determine their effects on serum metal levels before and after revision. Patients & Methods. We performed a multi-surgeon, prospective, controlled trial to compare clinical, radiographic, and metal ion concentration in serum (cobalt and chrome) results across multiple devices including the Large Head ASR XL System (MoM-1), the Ultamet Advanced Modularity System (MoM-2), and as the control the Pinacle Acetabular Cup System with polyethylene liner (MoP). One hundred and fifty-one consecutive patients undergoing THA were enrolled in the study: MoM-1 n=97; MoM-2 n=22; MoP n=32. Clinical, radiographic, and venous blood assessments were performed pre-operatively, and post-operatively at 6 months, 1 year and 2 years, and after revision (1,3,6,12 months). All serum ion concentrations are reported in nmol/L. We are following metal ion levels after revision and have developed an algorithm to diagnose and manage patients with MoM THA. Results. MoM-1 patients had significantly increased average cobalt and chromium levels. Clinical scores improved after surgery in all groups and continued to improve in MoM-2 and MoP patients after 2 years but decreased slightly in the MoM-1 patients at 2 years. Average cup inclination angle did not differ significantly between the groups: MoM-1 50.2, MoM-2 47.8, and MoP 51.7. In the MoM-1 group 11 patients (11%) had significantly elevated ion levels (MoM-1 Outliers). Nine hips (9.3%) in 8 MoM-1 outlier patients required revision. Metal ion levels were not significantly different between MoM-2 and MoP groups. Metal ion levels after revision in the MoM-1 group decreased rapidly but at one year post-operatively have still not returned to an equivalent baseline comparable to the MoM-2 and MoP groups. All revisions were in the MoM-1 group. Chromium levels decreased more slowly than Cobalt levels. Discussion. To our knowledge this is the only data in the literature prospectively comparing ion levels among groups and reporting post revision ion levels. Average serum ion levels were elevated at all post-operative samples in the MoM-1 group but this was due to significantly elevated levels in a subset of outliers who required revision. Excluding the outliers there is not a significant difference in post-operative ion levels between the groups. There was no radiographic evidence of component malposition or aseptic loosening in any of the groups. Control groups (MoM-2, MoP) performed comparatively across all variables. We present an algorithm to diagnose and manage patients with metal on metal THA and offer evidence that metal ion levels do decrease after revision but still remain abnormally elevated at one-year post revision compared to the control group. A significant portion of MoM-1 performs comparatively to the controls in terms of ions