Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 127 - 133
1 Feb 2018
Tarabichi M Shohat N Goswami K Parvizi J

Aims. The diagnosis of periprosthetic joint infection can be difficult due to the high rate of culture-negative infections. The aim of this study was to assess the use of next-generation sequencing for detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples of synovial fluid were obtained from patients undergoing aspiration of the hip or knee as part of the investigation of a periprosthetic infection. A panel of synovial fluid tests, including levels of C-reactive protein, human neutrophil elastase, total neutrophil count, alpha-defensin, and culture were performed prior to next-generation sequencing. Results. Of these 86 samples, 30 were alpha-defensin-positive and culture-positive (Group I), 24 were alpha-defensin-positive and culture-negative (Group II) and 32 were alpha-defensin-negative and culture-negative (Group III). Next-generation sequencing was concordant with 25 results for Group I. In four of these, it detected antibiotic resistant bacteria whereas culture did not. In another four samples with relatively low levels of inflammatory biomarkers, culture was positive but next-generation sequencing was negative. A total of ten samples had a positive next-generation sequencing result and a negative culture. In five of these, alpha-defensin was positive and the levels of inflammatory markers were high. In the other five, alpha-defensin was negative and the levels of inflammatory markers were low. While next-generation sequencing detected several organisms in each sample, in most samples with a higher probability of infection, there was a predominant organism present, while in those presumed not to be infected, many organisms were identified with no predominant organism. Conclusion. Pathogens causing periprosthetic infection in both culture-positive and culture-negative samples of synovial fluid could be identified by next-generation sequencing. Cite this article: Bone Joint J 2018;100-B:127–33


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research. Cite this article: Bone Joint J 2019;101-B:361–364


Bone & Joint Research
Vol. 3, Issue 4 | Pages 123 - 129
1 Apr 2014
Perry DC Griffin XL Parsons N Costa ML

The surgical community is plagued with a reputation for both failing to engage and to deliver on clinical research. This is in part due to the absence of a strong research culture, however it is also due to a multitude of barriers encountered in clinical research; particularly those involving surgical interventions. ‘Trauma’ amplifies these barriers, owing to the unplanned nature of care, unpredictable work patterns, the emergent nature of treatment and complexities in the consent process. This review discusses the barriers to clinical research in surgery, with a particular emphasis on trauma. It considers how barriers may be overcome, with the aim to facilitate future successful clinical research. Cite this article: Bone Joint Res 2014;3:123–9


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 430 - 439
1 Mar 2021
Geary M Gaston RG Loeffler B

Upper limb amputations, ranging from transhumeral to partial hand, can be devastating for patients, their families, and society. Modern paradigm shifts have focused on reconstructive options after upper extremity limb loss, rather than considering the amputation an ablative procedure. Surgical advancements such as targeted muscle reinnervation and regenerative peripheral nerve interface, in combination with technological development of modern prosthetics, have expanded options for patients after amputation. In the near future, advances such as osseointegration, implantable myoelectric sensors, and implantable nerve cuffs may become more widely used and may expand the options for prosthetic integration, myoelectric signal detection, and restoration of sensation. This review summarizes the current advancements in surgical techniques and prosthetics for upper limb amputees.

Cite this article: Bone Joint J 2021;103-B(3):430–439.


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 20 - 29
1 Oct 2015
Gehrke T Alijanipour P Parvizi J

Periprosthetic joint infection (PJI) is one of the most feared and challenging complications following total knee arthroplasty. We provide a detailed description of our current understanding regarding the management of PJI of the knee, including diagnostic aids, pre-operative planning, surgical treatment, and outcome.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):20–9.


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 856 - 864
1 Jul 2017
Helmerhorst GTT Teunis T Janssen SJ Ring D

The United States and Canada are in the midst of an epidemic of the use, misuse and overdose of opioids, and deaths related to overdose. This is the direct result of overstatement of the benefits and understatement of the risks of using opioids by advocates and pharmaceutical companies. Massive amounts of prescription opioids entered the community and were often diverted and misused. Most other parts of the world achieve comparable pain relief using fewer opioids.

The misconceptions about opioids that created this epidemic are finding their way around the world. There is particular evidence of the increased prescription of strong opioids in Europe.

Opioids are addictive and dangerous. Evidence is mounting that the best pain relief is obtained through resilience. Opioids are often prescribed when treatments to increase resilience would be more effective.

Cite this article: Bone Joint J 2017;99-B:856–64.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.

Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.